MAPK14 explained
See main article: P38 mitogen-activated protein kinases. Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.[1]
MAPK14 encodes p38α mitogen-activated protein kinase (MAPK) which is the prototypic member of the p38 MAPK family. p38 MAPKs are also known as stress-activated serine/threonine-specific kinases (SAPKs). In addition to MAPK14 for p38α MAPK, the p38 MAPK family has three additional members, including MAPK11, MAPK12 and MAPK13 which encodes p38β MAPK, p38γ MAPK and p38δ MAPK isoforms, respectively. p38α MAPK was originally identified as a tyrosine phosphorylated protein detected in activated immune cell macrophages with an essential role in inflammatory cytokine induction, such as Tumor Necrotic Factor α (TNFα).[2] [3] However, p38α MAPK mediated kinase activity has been implicated in many tissues beyond immune systems. p38α MAPK is mainly activated through MAPK kinase kinase cascades and exerts its biological function via downstream substrate phosphorylation. p38α MAPK is implicated in diverse cellular functions, from gene expression to programmed cell death through a network of signaling molecules and transcription factors. Pharmacological and genetic inhibition of p38α MAPK not only revealed its biological significance in physiological function but also the potential of targeting p38α MAPK in human disease such as immune disorders and heart failure.
Structure
MAPK14 is a 41 kDa protein composed of 360 amino acids.[4]
Function
The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases (MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress-related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.[5]
p38α MAPK is ubiquitously expressed in many cell types, in contrast, p38β MAPK is highly expressed in brain and lung, p38γ MAPK mostly in skeletal muscle and nerve system, and p38δ MAPK in uterus and pancreas.[6] [7] Like all MAP kinases, p38α MAPK has 11 conserved domains (Domains I to XI) and a Thr-Gly-Tyr (TGY) dual phosphorylation motif.Activation of p38 MAPK pathway has been implicated in a variety of stress response in addition to inflammation, including osmotic shock, heat, and oxidative stress.[6] [8] [9] The canonical pathway for p38 MAPK activation involve a cascade of protein kinases, including MAP3K such as MEKK1, 2, 3 and 4, TGFβ-activated kinase (TAK1), TAO1-3, mixed-lineage kinase 2/3 (MLK2/3), and apoptosis signal-regulating kinase 1/2 (ASK1/2), as well as MAP2Ks, such as MKK3, 6 and 4. MAP2K mediated phosphorylation of the TGY motif results in conformational change of p38 MAPK which allows kinase activation and accessibility to substrates.[10] In addition, TAK1-binding protein 1 (TAB1) and ZAP70 can induce p38 MAPK via non-canonical autophosphorylation.[11] [12] Furthermore, acetylation of p38 MAPK at lys-53 of the ATP-binding pocket also enhances p38 MAPK activity during cellular stress[13] Under basal conditions, p38α MAPK is detected in both the nucleus and the cytoplasm. One of the consequences of p38 MAPK activation is translocation into the nucleus.[14] involving both p38 MAPK phosphorylation and microtubule- and dynein-dependent process.[15] In addition, one substrate of p38 MAPK, MAP kinase-activated protein kinase 2 (MAPAK2 or MK2) can modulate and direct p38α MAPK localization to cytosole via direct interaction.[16] p38α MAPK activation can be reversed by dephosphorylation of the TGY motif carried out by protein phosphatases, including ser-thr protein phosphatases (PPs), protein tyrosine phosphatases (PTP), and dual-specificity phosphatases (DUSP). For example, ser/thr phosphatases PP2Cα/β suppress activity of p38s MAPK through direct interaction as well as suppression of MKKs/TAK1 in mammalian cells.[17] [18] Hematopoietic PTP (HePTP) and striatal-enriched phosphatase (STEP) bind to MAPKs through a kinase-interaction motif (KIM) and inactivates them by dephosphorylating the phosphotyrosine residue in their activation loop.[19] [20] [21] DUSPs, which have a docking domain to MAPKs and dual-specific phosphatase activity, can also bind to p38 MAPKs and dephosphorylate of both phosphotyrosine and phosphothreonine residues.[10] In addition to these phosphatases, other molecular components such as Hsp90-Cdc37 chaperone complex can also modulate p38 MAPK autophosphorylation activity and prevents non-canonical activation.[22]
p38α MAPK is implicated in cell survival/apoptosis, proliferation, differentiation, migration, mRNA stability, and inflammatory response in different cell types through variety of different target molecules[23] MK2 is one of the well-studied downstream targets of p38α MAPK. Their downstream substrates include small heat shock protein 27 (HSP27), lymphocyte-specific protein1 (LSP1), cAMP response element-binding protein (CREB), cyclooxygenase 2 (COX2), activating transcription factor 1 (ATF1), serum response factor (SRF), and mRNA-binding protein tristetraprolin (TTP)[14] [24] In addition to protein kinases, many transcription factors are downstream targets of p38α MAPK, including ATF1/2/6, c-Myc, c-FOS, GATA4, MEF2A/C, SRF, STAT1, and CHOP[25] [26] [27] [28]
Role in cardiovascular system
p38α MAPK constitutes the main p38 MAPK activity in heart. During cardiomyocyte maturation in new born mouse heart, p38α MAPK activity can regulate myocyte cytokinesis and promote cell cycle exit.[29] while inhibition of p38 MAPK activity leads to induction of mitosis in both adult and fetal cardiomyocyte.[30] [31] Therefore, p38 MAPK is associated with cell-cycle arrest in mammalian cardiomyocytes and its inhibition may represent a strategy to promote cardiac regeneration in response to injury. In addition, p38α MAPK induction promotes myocyte apoptosis.[32] [33] via downstream targets STAT1, CHOP, FAK, SMAD, cytochrome c, NF-κB, PTEN, and p53.[34] [35] [36] [37] [38] [39] [40] p38 MAPK can also target IRS-1 mediated AKT signaling and promotes myocyte death under chronic insulin stimulation.[41] Inhibition of p38 MAPK activity confers cardioprotection against ischemia reperfusion injury in heart[42] [43] However, some reports demonstrated that p38 MAPK also involves in anti-apoptotic effect via phosphorylation of αβ-Crystallin or induction of Pim-3 during early response to oxidative stress or anoxic preconditioning respectively[44] [45] [46] Both p38α MAPK and p38β MAPK appear to have an opposite role in apoptosis.[47] Whereas p38α MAPK has a pro-apoptotic role via p53 activation, p38β MAPK has a pro-survival role via inhibition of ROS formation.[48] [49] In general, chronic activation of p38 MAPK activity is viewed as pathological and pro-apoptotic, and inhibition of p38 MAPK activity is in clinical evaluation as a potential therapy to mitigate acute injury in ischemic heart failure.[50] p38 MAPK activity is also implicated in cardiac hypertrophy which is a significant feature of pathological remodeling in the diseased hearts and a major risk factor for heart failure and advert outcome. Most in vitro evidence supports that p38 MAPK activation promotes cardiomyocyte hypertrophy.[47] [51] [52] [53] However, in vivo evidence suggest that chronic activation of p38 MAPK activity triggers restrictive cardiomyopathy with limited hypertrophy,[54] while genetic inactivation p38α MAPK in mouse heart results in an elevated cardiac hypertrophy in response to pressure overload[55] [56] or swimming exercise.[57] Therefore, the functional role of p38 MAPK in cardiac hypertrophy remains controversial and yet to be further elucidated.
Interactions
MAPK14 has been shown to interact with:
- AKT1,
- ATF2,[58] [59] [60]
- CDC25B,[61]
- CDC25C,[61]
- CSNK2A1,[62]
- DUSP10,[63]
- DUSP16,[64]
- DUSP1,[65] [66]
- FUBP1,[67]
- HTRA2,[68]
- KRT8[69]
- MAP2K6,[59] [70] [71]
- TAB1,[72]
- MAPK1,[73]
- MAPKAPK2,[74] [75]
- MAPKAPK3,[76]
- MEF2A,[77] [78]
- RPS6KA4,[79] and
- ZFP36L1.[80]
Further reading
- Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ . Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2 . Current Biology . 8 . 19 . 1049–57 . Sep 1998 . 9768359 . 10.1016/S0960-9822(98)70442-7 . free . 1998CBio....8.1049B .
- Bradham C, McClay DR . p38 MAPK in development and cancer . Cell Cycle . 5 . 8 . 824–8 . Apr 2006 . 16627995 . 10.4161/cc.5.8.2685 . free .
- P. Sankaranarayanan. T. E. Schomay . K. A. Aiello . O. Alter . Tensor GSVD of Patient- and Platform-Matched Tumor and Normal DNA Copy-Number Profiles Uncovers Chromosome Arm-Wide Patterns of Tumor-Exclusive Platform-Consistent Alterations Encoding for Cell Transformation and Predicting Ovarian Cancer Survival . PLOS ONE . 10 . 4 . e0121396 . April 2015 . 10.1371/journal.pone.0121396 . AAAS EurekAlert! Press Release and NAE Podcast Feature . 25875127 . 4398562. 2015PLoSO..1021396S . free .
External links
Notes and References
- Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW . A protein kinase involved in the regulation of inflammatory cytokine biosynthesis . Nature . 372 . 6508 . 739–46 . January 1995 . 7997261 . 10.1038/372739a0 . 4306822 .
- Han J, Lee JD, Bibbs L, Ulevitch RJ . A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells . Science . 265 . 5173 . 808–11 . Aug 1994 . 7914033 . 10.1126/science.7914033. 1994Sci...265..808H .
- Han J, Lee JD, Tobias PS, Ulevitch RJ . Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14 . The Journal of Biological Chemistry . 268 . 33 . 25009–14 . Nov 1993 . 10.1016/S0021-9258(19)74564-5 . 7693711 . free .
- Web site: Mitogen-activated protein kinase 14 . Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) .
- Web site: Entrez Gene: MAPK14 mitogen-activated protein kinase 14.
- Ono K, Han J . The p38 signal transduction pathway: activation and function . Cellular Signalling . 12 . 1 . 1–13 . Jan 2000 . 10676842 . 10.1016/s0898-6568(99)00071-6.
- Li M, Liu J, Zhang C . Evolutionary history of the vertebrate mitogen activated protein kinases family . PLOS ONE . 6 . 10 . e26999 . 2011 . 22046431 . 10.1371/journal.pone.0026999 . 3202601. 2011PLoSO...626999L . free .
- Johnson GL, Lapadat R . Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases . Science . 298 . 5600 . 1911–2 . Dec 2002 . 12471242 . 10.1126/science.1072682 . 2002Sci...298.1911J . 33514114 .
- Kyriakis JM, Avruch J . Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation . Physiological Reviews . 81 . 2 . 807–69 . Apr 2001 . 11274345 . 10.1152/physrev.2001.81.2.807 .
- Cuadrado A, Nebreda AR . Mechanisms and functions of p38 MAPK signalling . The Biochemical Journal . 429 . 3 . 403–17 . Aug 2010 . 20626350 . 10.1042/BJ20100323 . 9018714 .
- Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, Fornace AJ, Ashwell JD . Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases . Nature Immunology . 6 . 4 . 390–5 . Apr 2005 . 15735648 . 10.1038/ni1177 . 25004892 .
- Tanno M, Bassi R, Gorog DA, Saurin AT, Jiang J, Heads RJ, Martin JL, Davis RJ, Flavell RA, Marber MS . Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia . Circulation Research . 93 . 3 . 254–61 . Aug 2003 . 12829618 . 10.1161/01.RES.0000083490.43943.85 . free .
- Pillai VB, Sundaresan NR, Samant SA, Wolfgeher D, Trivedi CM, Gupta MP . Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes . Molecular and Cellular Biology . 31 . 11 . 2349–63 . Jun 2011 . 21444723 . 10.1128/MCB.01205-10 . 3133249.
- Zarubin T, Han J . Activation and signaling of the p38 MAP kinase pathway . Cell Research . 15 . 1 . 11–8 . Jan 2005 . 15686620 . 10.1038/sj.cr.7290257 . free .
- Gong X, Ming X, Deng P, Jiang Y . Mechanisms regulating the nuclear translocation of p38 MAP kinase . Journal of Cellular Biochemistry . 110 . 6 . 1420–9 . Aug 2010 . 20506250 . 10.1002/jcb.22675 . 38862126 .
- Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ . Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2 . Current Biology . 8 . 19 . 1049–57 . Sep 1998 . 9768359 . 10.1016/s0960-9822(98)70442-7. free . 1998CBio....8.1049B .
- Hanada M, Kobayashi T, Ohnishi M, Ikeda S, Wang H, Katsura K, Yanagawa Y, Hiraga A, Kanamaru R, Tamura S . Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells . FEBS Letters . 437 . 3 . 172–6 . Oct 1998 . 9824284 . 10.1016/s0014-5793(98)01229-0. free .
- Takekawa M, Maeda T, Saito H . Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways . The EMBO Journal . 17 . 16 . 4744–52 . Aug 1998 . 9707433 . 10.1093/emboj/17.16.4744 . 1170803.
- Pulido R, Zúñiga A, Ullrich A . PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif . The EMBO Journal . 17 . 24 . 7337–50 . Dec 1998 . 9857190 . 10.1093/emboj/17.24.7337 . 1171079.
- Saxena M, Williams S, Brockdorff J, Gilman J, Mustelin T . Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP) . The Journal of Biological Chemistry . 274 . 17 . 11693–700 . Apr 1999 . 10206983 . 10.1074/jbc.274.17.11693. free .
- Saxena M, Williams S, Gilman J, Mustelin T . Negative regulation of T cell antigen receptor signal transduction by hematopoietic tyrosine phosphatase (HePTP) . The Journal of Biological Chemistry . 273 . 25 . 15340–4 . Jun 1998 . 9624114 . 10.1074/jbc.273.25.15340. free .
- Ota A, Zhang J, Ping P, Han J, Wang Y . Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte . Circulation Research . 106 . 8 . 1404–12 . Apr 2010 . 20299663 . 10.1161/CIRCRESAHA.109.213769 . 2891038.
- Young PR . Perspective on the discovery and scientific impact of p38 MAP kinase . Journal of Biomolecular Screening . 18 . 10 . 1156–63 . Dec 2013 . 23896688 . 10.1177/1087057113497401 . free .
- Rose BA, Force T, Wang Y . Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale . Physiological Reviews . 90 . 4 . 1507–46 . Oct 2010 . 20959622 . 10.1152/physrev.00054.2009 . 3808831.
- Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ . Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine . The Journal of Biological Chemistry . 270 . 13 . 7420–6 . Mar 1995 . 7535770 . 10.1074/jbc.270.13.7420. free .
- Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V . The role of ATF-2 in oncogenesis . BioEssays . 30 . 4 . 314–27 . Apr 2008 . 18348191 . 10.1002/bies.20734 . 678541 .
- Antholine WE, Taketa F, Wang JT, Manoharan PT, Rifkind JM . Interaction between bound cupric ion and spin-labeled cysteine beta-93 in human and horse hemoglobins . Journal of Inorganic Biochemistry . 25 . 2 . 95–108 . Oct 1985 . 2997391 . 10.1016/0162-0134(85)80018-0.
- Breitwieser W, Lyons S, Flenniken AM, Ashton G, Bruder G, Willington M, Lacaud G, Kouskoff V, Jones N . Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells . Genes & Development . 21 . 16 . 2069–82 . Aug 2007 . 17699753 . 10.1101/gad.430207 . 1948861.
- Engel FB, Schebesta M, Keating MT . Anillin localization defect in cardiomyocyte binucleation . Journal of Molecular and Cellular Cardiology . 41 . 4 . 601–12 . Oct 2006 . 16889791 . 10.1016/j.yjmcc.2006.06.012 .
- Engel FB, Hsieh PC, Lee RT, Keating MT . FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction . Proceedings of the National Academy of Sciences of the United States of America . 103 . 42 . 15546–51 . Oct 2006 . 17032753 . 10.1073/pnas.0607382103 . 1622860. 2006PNAS..10315546E . free .
- Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT . p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes . Genes & Development . 19 . 10 . 1175–87 . May 2005 . 15870258 . 10.1101/gad.1306705 . 1132004.
- Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF, Molkentin JD . Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo . The Journal of Biological Chemistry . 279 . 15 . 15524–30 . Apr 2004 . 14749328 . 10.1074/jbc.M313717200 . free .
- Sharov VG, Todor A, Suzuki G, Morita H, Tanhehco EJ, Sabbah HN . Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1 . European Journal of Heart Failure . 5 . 2 . 121–9 . Mar 2003 . 12644001 . 10.1016/s1388-9842(02)00254-4. 21917525 . free .
- Eiras S, Fernández P, Piñeiro R, Iglesias MJ, González-Juanatey JR, Lago F . Doxazosin induces activation of GADD153 and cleavage of focal adhesion kinase in cardiomyocytes en route to apoptosis . Cardiovascular Research . 71 . 1 . 118–28 . Jul 2006 . 16631627 . 10.1016/j.cardiores.2006.03.014 . free .
- Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J . Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death . Diabetes . 50 . 10 . 2363–75 . Oct 2001 . 11574421 . 10.2337/diabetes.50.10.2363. free .
- Ghosh J, Das J, Manna P, Sil PC . Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway . Toxicology and Applied Pharmacology . 240 . 1 . 73–87 . Oct 2009 . 19616567 . 10.1016/j.taap.2009.07.008 .
- Qian J, Ling S, Castillo AC, Long B, Birnbaum Y, Ye Y . Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia . American Journal of Physiology. Heart and Circulatory Physiology . 302 . 9 . H1806–17 . May 2012 . 22367504 . 10.1152/ajpheart.00929.2011 .
- Schröder D, Heger J, Piper HM, Euler G . Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat . Journal of Molecular Medicine . 84 . 11 . 975–83 . Nov 2006 . 16924465 . 10.1007/s00109-006-0090-0 . 12670283 .
- Stephanou A, Scarabelli TM, Brar BK, Nakanishi Y, Matsumura M, Knight RA, Latchman DS . Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701 . The Journal of Biological Chemistry . 276 . 30 . 28340–7 . Jul 2001 . 11309387 . 10.1074/jbc.M101177200 . free .
- Zhao D, Chu WF, Wu L, Li J, Liu QM, Lu YJ, Qiao GF, Wang ZG, Zhang ZR, Yang BF . PAF exerts a direct apoptotic effect on the rat H9c2 cardiomyocytes in Ca2+-dependent manner . International Journal of Cardiology . 143 . 1 . 86–93 . Aug 2010 . 19237210 . 10.1016/j.ijcard.2009.01.068 .
- Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM, Guo S . Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance . Diabetes . 62 . 11 . 3887–900 . Nov 2013 . 24159000 . 10.2337/db13-0095 . 3806607.
- Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL . Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion . Circulation . 99 . 13 . 1685–91 . Apr 1999 . 10190877 . 10.1161/01.cir.99.13.1685. free .
- Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ . Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction . Journal of Molecular and Cellular Cardiology . 38 . 4 . 617–23 . Apr 2005 . 15808838 . 10.1016/j.yjmcc.2005.01.012 .
- Aggeli IK, Beis I, Gaitanaki C . Oxidative stress and calpain inhibition induce alpha B-crystallin phosphorylation via p38 MAPK and calcium signalling pathways in H9c2 cells . Cellular Signalling . 20 . 7 . 1292–302 . Jul 2008 . 18420382 . 10.1016/j.cellsig.2008.02.019 .
- Liu D, He M, Yi B, Guo WH, Que AL, Zhang JX . Pim-3 protects against cardiomyocyte apoptosis in anoxia/reoxygenation injury via p38-mediated signal pathway . The International Journal of Biochemistry & Cell Biology . 41 . 11 . 2315–22 . Nov 2009 . 19505587 . 10.1016/j.biocel.2009.05.021 .
- Mitra A, Ray A, Datta R, Sengupta S, Sarkar S . Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2 . Journal of Cellular Physiology . 229 . 9 . 1272–82 . Sep 2014 . 24464634 . 10.1002/jcp.24565 . 10718645 .
- Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J, Chien KR . Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family . The Journal of Biological Chemistry . 273 . 4 . 2161–8 . Jan 1998 . 9442057 . 10.1074/jbc.273.4.2161. free .
- Kim JK, Pedram A, Razandi M, Levin ER . Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms . The Journal of Biological Chemistry . 281 . 10 . 6760–7 . Mar 2006 . 16407188 . 10.1074/jbc.M511024200 . free .
- Liu H, Pedram A, Kim JK . Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β . Cardiovascular Research . 89 . 1 . 119–28 . Jan 2011 . 20724307 . 10.1093/cvr/cvq265 . 3002868.
- Marber MS, Rose B, Wang Y . The p38 mitogen-activated protein kinase pathway--a potential target for intervention in infarction, hypertrophy, and heart failure . Journal of Molecular and Cellular Cardiology . 51 . 4 . 485–90 . Oct 2011 . 21062627 . 10.1016/j.yjmcc.2010.10.021 . 3061241.
- Liang Q, Molkentin JD . Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models . Journal of Molecular and Cellular Cardiology . 35 . 12 . 1385–94 . Dec 2003 . 14654364 . 10.1016/j.yjmcc.2003.10.001.
- Nemoto S, Sheng Z, Lin A . Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy . Molecular and Cellular Biology . 18 . 6 . 3518–26 . Jun 1998 . 9584192 . 10.1128/mcb.18.6.3518 . 108933.
- Zechner D, Thuerauf DJ, Hanford DS, McDonough PM, Glembotski CC . A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression . The Journal of Cell Biology . 139 . 1 . 115–27 . Oct 1997 . 9314533 . 10.1083/jcb.139.1.115 . 2139826.
- Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, Saffitz J, Chien K, Xiao RP, Kass DA, Wang Y . The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy . Proceedings of the National Academy of Sciences of the United States of America . 98 . 21 . 12283–8 . Oct 2001 . 11593045 . 10.1073/pnas.211086598 . 59806. 2001PNAS...9812283L . free .
- Nishida K, Yamaguchi O, Hirotani S, Hikoso S, Higuchi Y, Watanabe T, Takeda T, Osuka S, Morita T, Kondoh G, Uno Y, Kashiwase K, Taniike M, Nakai A, Matsumura Y, Miyazaki J, Sudo T, Hongo K, Kusakari Y, Kurihara S, Chien KR, Takeda J, Hori M, Otsu K . p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload . Molecular and Cellular Biology . 24 . 24 . 10611–20 . Dec 2004 . 15572667 . 10.1128/MCB.24.24.10611-10620.2004 . 533965.
- Zhang S, Weinheimer C, Courtois M, Kovacs A, Zhang CE, Cheng AM, Wang Y, Muslin AJ . The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis . The Journal of Clinical Investigation . 111 . 6 . 833–41 . Mar 2003 . 12639989 . 10.1172/JCI16290 . 153766.
- Taniike M, Yamaguchi O, Tsujimoto I, Hikoso S, Takeda T, Nakai A, Omiya S, Mizote I, Nakano Y, Higuchi Y, Matsumura Y, Nishida K, Ichijo H, Hori M, Otsu K . Apoptosis signal-regulating kinase 1/p38 signaling pathway negatively regulates physiological hypertrophy . Circulation . 117 . 4 . 545–52 . Jan 2008 . 18195174 . 10.1161/CIRCULATIONAHA.107.710434 . free .
- Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ . Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine . The Journal of Biological Chemistry . 270 . 13 . 7420–6 . Mar 1995 . 7535770 . 10.1074/jbc.270.13.7420. free .
- Chen Z, Cobb MH . Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2 . The Journal of Biological Chemistry . 276 . 19 . 16070–5 . May 2001 . 11279118 . 10.1074/jbc.M100681200 . free .
- Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ . Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase . Proceedings of the National Academy of Sciences of the United States of America . 94 . 14 . 7337–42 . Jul 1997 . 9207092 . 23822 . 10.1073/pnas.94.14.7337. 1997PNAS...94.7337T . free .
- Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, Appella E, Fornace AJ . Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase . Nature . 411 . 6833 . 102–7 . May 2001 . 11333986 . 10.1038/35075107 . 2001Natur.411..102B . 4410763 .
- Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL . Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase . The Journal of Biological Chemistry . 275 . 22 . 16569–73 . Jun 2000 . 10747897 . 10.1074/jbc.M000312200 . free .
- Tanoue T, Moriguchi T, Nishida E . Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5 . The Journal of Biological Chemistry . 274 . 28 . 19949–56 . Jul 1999 . 10391943 . 10.1074/jbc.274.28.19949. free .
- Masuda K, Shima H, Watanabe M, Kikuchi K . MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein . The Journal of Biological Chemistry . 276 . 42 . 39002–11 . Oct 2001 . 11489891 . 10.1074/jbc.M104600200 . free .
- Tanoue T, Yamamoto T, Maeda R, Nishida E . A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs . The Journal of Biological Chemistry . 276 . 28 . 26629–39 . Jul 2001 . 11359773 . 10.1074/jbc.M101981200 . free .
- Slack DN, Seternes OM, Gabrielsen M, Keyse SM . Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1 . The Journal of Biological Chemistry . 276 . 19 . 16491–500 . May 2001 . 11278799 . 10.1074/jbc.M010966200 . free .
- Kim MJ, Park BJ, Kang YS, Kim HJ, Park JH, Kang JW, Lee SW, Han JM, Lee HW, Kim S . Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation . Nature Genetics . 34 . 3 . 330–6 . Jul 2003 . 12819782 . 10.1038/ng1182 . 41006480 .
- Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS . Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia . The Journal of Biological Chemistry . 275 . 4 . 2581–8 . Jan 2000 . 10644717 . 10.1074/jbc.275.4.2581. free .
- Ku NO, Azhar S, Omary MB . Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation . The Journal of Biological Chemistry . 277 . 13 . 10775–82 . Mar 2002 . 11788583 . 10.1074/jbc.M107623200 . free .
- Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ . MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway . Molecular and Cellular Biology . 16 . 3 . 1247–55 . Mar 1996 . 8622669 . 231107 . 10.1128/mcb.16.3.1247.
- Stein B, Brady H, Yang MX, Young DB, Barbosa MS . Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade . The Journal of Biological Chemistry . 271 . 19 . 11427–33 . May 1996 . 8626699 . 10.1074/jbc.271.19.11427. free .
- Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J . MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha . Science . 295 . 5558 . 1291–4 . Feb 2002 . 11847341 . 10.1126/science.1067289 . 2002Sci...295.1291G . 93896233 .
- Sanz-Moreno V, Casar B, Crespo P . p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels . Molecular and Cellular Biology . 23 . 9 . 3079–90 . May 2003 . 12697810 . 153192 . 10.1128/mcb.23.9.3079-3090.2003.
- Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P, McLeish KR . p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils . The Journal of Biological Chemistry . 276 . 5 . 3517–23 . Feb 2001 . 11042204 . 10.1074/jbc.M005953200 . free .
- Janknecht R . Cell type-specific inhibition of the ETS transcription factor ER81 by mitogen-activated protein kinase-activated protein kinase 2 . The Journal of Biological Chemistry . 276 . 45 . 41856–61 . Nov 2001 . 11551945 . 10.1074/jbc.M106630200 . free .
- Tanoue T, Maeda R, Adachi M, Nishida E . Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions . The EMBO Journal . 20 . 3 . 466–79 . Feb 2001 . 11157753 . 133461 . 10.1093/emboj/20.3.466 .
- Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J . Regulation of the MEF2 family of transcription factors by p38 . Molecular and Cellular Biology . 19 . 1 . 21–30 . Jan 1999 . 9858528 . 83862 . 10.1128/mcb.19.1.21.
- Yang SH, Galanis A, Sharrocks AD . Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors . Molecular and Cellular Biology . 19 . 6 . 4028–38 . Jun 1999 . 10330143 . 104362 . 10.1128/mcb.19.6.4028.
- Pierrat B, Correia JS, Mary JL, Tomás-Zuber M, Lesslauer W . RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK) . The Journal of Biological Chemistry . 273 . 45 . 29661–71 . Nov 1998 . 9792677 . 10.1074/jbc.273.45.29661. free .
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M . Towards a proteome-scale map of the human protein-protein interaction network . Nature . 437 . 7062 . 1173–8 . Oct 2005 . 16189514 . 10.1038/nature04209 . 2005Natur.437.1173R . 4427026 .