Michel Devoret Explained

Michel Devoret
Fields:Experimental Solid-state physics, Condensed Matter Physics, Quantum error correction
Workplaces:University of California, Santa Barbara
Yale University
University of Paris-Sud
University of California Berkeley
Alma Mater:University of Paris-Sud
Ecole Nationale Superieure des Telecommunications
Doctoral Students:Vincent Bouchiat
Known For:Quantronics, single-electron pump, Circuit quantum electrodynamics
Awards:Micius Quantum Prize 2021, John Bell Prize (2013)

Michel Devoret is a French physicist and F. W. Beinecke Professor of Applied Physics at Yale University. He also holds a position as the Director of the Applied Physics Nanofabrication Lab at Yale.[1] He is known for his pioneering work on macroscopic quantum tunneling, and the single-electron pump as well as in groundbreaking contributions to initiating the fields of circuit quantum electrodynamics and quantronics.

Biography

Devoret was born in France. He graduated from Ecole Nationale Superieure des Telecommunications in Paris (1975) and went on to earn his PhD in physics from the University of Orsay (University of Paris-Sud) in 1982, while working in the molecular quantum physics group at Paris. After his doctoral work, he proceeded to post-doctoral training for two years, working on macroscopic quantum tunneling in John Clarke's laboratory at the University of California Berkeley.

Devoret's research has been focused on experimental solid state physics and condensed matter physics, with specific emphasis on circuit quantum electrodynamics and a field he and his colleagues initiated, known as "quantronics," the study of certain mesoscopic electronic effects in which collective degrees of freedom, such as electric currents and voltages behave quantum mechanically. In addition, his group has been carrying out investigations on single Cooper pair devices for fields such as quantum computation and metrology, and studying amplification, information, and noise in mesoscopic systems.

His work in association with well-known experimentalists in the field such as Rob Schoelkopf as well as theorists, such as Steven Girvin has brought about valuable insights in quantum computing and in developing a new paradigm of circuit QED using superconducting electrical circuits, which are now viewed as one of the main platforms for the implementation of quantum information processors. Also, after having developed new types of amplifiers reaching the quantum limit, he employed them to determine the fundamental back-action of measurements. In particular, Michel’s team showed that it was possible to stop a quantum jump in its flight and reverse it. He currently investigates the new phenomena of quantum error correction and fault-tolerant quantum operation. In addition, his work on quantum information, in association with A. Marblestone, has shown an exponential quantum enhancement in certain communication channels as a result of entanglement (see Quantum pseudo-telepathy).[2]

In addition to a number of awards, he has been awarded the John Bell Prize (shared with Rob Schoelkopf) in 2013 for "Fundamental and pioneering experimental advances in entangling superconducting qubits and microwave photons, and their application to quantum information processing."[3]

Honors

Noteworthy publications

External links

Notes and References

  1. Web site: Michel Devoret - Department of Applied Physics.
  2. A. Marblestone and M. Devoret, "Exponential Quantum Enhancement for Distributed Addition with Local Nonlinearity", Quantum Information Processing, Vol. 9, No.1 (2010)
  3. Web site: 2013: Devoret and Schoelkopf. 2016-08-07. 2014-06-04. https://web.archive.org/web/20140604060818/http://cqiqc.physics.utoronto.ca/bell_prize/devoret_schoelkopf.html. dead.