Lymphoid enhancer-binding factor 1 explained

Lymphoid enhancer-binding factor 1 (LEF1) is a protein that in humans is encoded by the LEF1 gene.[1] It is a member of T cell factor/lymphoid enhancer factor (TCF/LEF) family.

Function

Lymphoid enhancer-binding factor-1 (LEF1) is a 48-kD nuclear protein that is expressed in pre-B and T cells. It binds to a functionally important site in the T-cell receptor-alpha (TCRA) enhancer and confers maximal enhancer activity. LEF1 belongs to a family of regulatory proteins that share homology with high mobility group protein-1 (HMG1).[2]

Clinical significance

LEF1 is highly overexpressed and associated with disease progression and poor prognosis in B-cell chronic lymphocytic leukemia[3] and other kinds of malignancies like colorectal cancer.[4] It is also a promising potential drug target.[5]

Interactions

Lymphoid enhancer-binding factor 1 has been shown to interact with:

Relevance

Part of the capabilities of the LEF1 family of genes to be implicated in cancer growth is their ability to regulate the epithelial-mesenchymal transition (EMT) process, a cellular pathway by which the inhibition of genes responsible for producing adhesive properties and for polarizing the cell occurs. Though it can be activated independently of β-catenin, much of its effects result from the activation of this protein. When activated by β-catenin, LEF-1 transcription is upregulated and induces the inhibition of the genes which code for polarizing and adhesive properties of the cells. As a result of this LEF/β-catenin-induced inhibition, biochemical transformations take place that allow for heightened migratory and invasive capabilities, increased resistance to apoptosis, and the increased production of components of the extracellular matrix (ECM).[16] Once the LEF1 cells have gained these properties and take on the form of mesenchymal stem cells, they are able to migrate away from their initial sources of attachment and this is when they can begin to exert their cancerous effects.

LEF1 has gained much notability recently for its prevalence in many cancerous pathologies, but even with this increased focus on the mechanisms by which LEF1 and the families of genes it's associated with, many of its downstream effects have not been fully elucidated. As a result, studies are continuing to be published surrounding the LEF1 family of genes, in order to fully expound upon its mechanism of action.[17]

Regulation

LEF1's Membership with the High Mobility Group (HMG) Proteins

Lymphoid enhancer-binding factor-1 (LEF1) is a 48-kD nuclear protein that is expressed in pre-B and T cells. It binds to a functionally important site in the T-cell receptor-alpha (TCRA) enhancer and confers maximal enhancer activity. LEF1 belongs to a family of regulatory proteins that share homology with high mobility group protein-1 (HMG1).[18] These high mobility groups regulate a vast array of cellular processes through the production of transcription factors, which go on to regulate some of the cells most vital processes, including chromatin remodeling, recombination, DNA replication, DNA repair and transcription. In this shared homology between LEF1 and other members of the HMG family, many of the mechanisms of action that can be seen in the way in which HMG1 interacts with histones, nucleosomes and other chromosomal components can be conferred in how LEF1 regulates many of the same cellular processes, as homology oftentimes helps to infer shared function. In fact, other members of the high mobility group (HMG), including TCF-1, have been shown to possess differential expression at different points within the embryogenesis of murine cells.[19]

Upstream Regulation of LEF1

In terms of the regulation of LEF1 itself however, a number of enzymes like glycogen synthase kinase 3 (GSK3) and Integrin-linked kinase (ILK) will phosphorylate the β-catenin/(LEF/TCF) complexes, signaling for their activation. As previously mentioned, the signaling of these β-catenin molecules plays a central role in the recruitment and subsequent activation of the LEF/TCF proteins.[20] Working as coregulators of one another, β-catenin and LEF/TCF proteins complex and go on to act downstream of the Wnt signaling pathway, whose ligands are highly expressed in tumors. Recently, some of the upstream molecules present in this Wnt signaling pathway have been elucidated that have connected the missing components.[21] Modern molecular biological techniques helped to identify other upstream regulators of the β-catenin/(LEF/TCF) complex along with GSK3 and ILK, notably casein kinase I ε (CK1-ε). CK1-ε has been shown to be a positive regulator of the β-catenin/(LEF/TCF) complex and even mimics the identity of other proteins in the Wnt signaling pathway, thereby intensifying the effects that LEF and TCF proteins have on the cell.

Characterization

Short vs Long LEF1 Isoforms

Along with its role in the regulation of the epithelial-mesenchymal transition (EMT) process, LEF1 has also been shown to be implicated in the processes of cellular senescence and aging. Different isoforms have been studied that have differential effects on these biological processes, once again demonstrating the pervasiveness of this family of genes in many different areas of cellular physiology. The biological process is often linked with the senescense-associated secretory phenotype (SASP), wherein aging cells secrete higher levels of immune modulators, pro-inflammatory cytokines, proteases and other biochemicals. These phenotypes that are implicated with SASP's are linked to other age related pathologies, including Chronic obstructive pulmonary disease (COPD) and Idiopathic pulmonary fibrosis (IPF), amongst a host of other comorbidities. While the short LEF1 isoform has been shown to be associated with exacerbation of the effects of cellular senescence, measurement of the activity of transcription factors/regulons associated with the long LEF1 isoform have demonstrated reversal of signs of cellular senescence through a currently unknown mechanism. Research is still being conducted to elucidate the role of these distinct isoforms in contributing to cellular senescence, but the current research has shown the important role LEF1 plays in regulating the transcription of downstream products associated with a wide range of cellular pathways.

Research and Clinical significance

Expression in Cancer Cells

LEF1 is highly overexpressed and associated with disease progression and poor prognosis in B-cell chronic lymphocytic leukemia[22] and other kinds of malignancies like colorectal cancer.[23] It is also a promising potential drug target.[24] Due to it's irregular expression common in these forms of cancer, as well as other forms like acute lymphoblastic leukemia (ALL), oral squamous cell carcinoma (OSCC) and even renal cell carcinomas (RCC), LEF1 has been heavily targeted as a drug candidate in a number of different studies.[25] Many of these studies have proven effective in diminishing the growth, migration and invasion rates of tumorigenic cancer cells.

Drug-Induced Inhibition of LEF1

The investigation of the role of LEF1 in regards to aging is of extreme importance, as more effective and longevity based therapeutic interventions could be developed that target LEF1 and associated genes, in order to provide a means of minimizing the effects of age-related pathologies and increasing life span for those who are already at higher risk for other age-related comorbidities.[26] The dysregulation of LEF1 has been shown to be highly correlated with the β-catenin binding domain, leading many researchers to consider the downstream effects of knocking out this binding domain and investigating the subsequent effects. The research has revealed that knocking out this domain downregulates the expression the protein products of the LEF1 gene, and as a result, curtailing many of the deleterious effects rapid LEF1 proliferation and migration can have.

In fact, LEF1 silencing in cases of colorectal cancer has been demonstrated to increase the sensitivity of colorectal cancer cells to a number of Platinum-based drugs, including oxaliplatin, 5-FU and irinotecan.[27] These Pt-based drugs act by inhibiting the synthesis of DNA molecules and covalently modifying molecules by forming DNA adducts. In turn, these drugs are able to promote apoptosis in the cancerous cells. Different isoforms of the LEF1 gene, including the long-form and the short-isoform/truncated dominant negative form (dnLEF1), have been shown to have differential effects on the pathology of colorectal cancer, although higher levels of activation in the Wnt/β-catenin signaling pathway in general are correlated with increased cancer stem cell properties in murine tumors.[28] These associations have far reaching implications in regards to the fields of cancer biology and medicine in general, as the enhanced sensitivity of cancer cells to chemotherapeutic agents upon inhibition of the LEF1 family and the corresponding TCF-1, TCF-2, TCF-3 and TCF-4 genes, allows for the development of more drugs that can target the inhibition of this specific pathway and lower the morbidity and mortality rates for a diverse range of cancerous pathologies.

Interactions

Molecules that LEF1 has been shown to interact with:

Further reading

Notes and References

  1. Milatovich A, Travis A, Grosschedl R, Francke U . Gene for lymphoid enhancer-binding factor 1 (LEF1) mapped to human chromosome 4 (q23-q25) and mouse chromosome 3 near Egf . Genomics . 11 . 4 . 1040–1048 . December 1991 . 1783375 . 10.1016/0888-7543(91)90030-I . free .
  2. Web site: Entrez Gene: LEF1 lymphoid enhancer-binding factor 1.
  3. Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer KA . High lymphoid enhancer-binding factor-1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia . Hematology Reports . 2 . 1 . e3 . January 2010 . 22184516 . 3222268 . 10.4081/hr.2010.e3 .
  4. Eskandari E, Mahjoubi F, Motalebzadeh J . An integrated study on TFs and miRNAs in colorectal cancer metastasis and evaluation of three co-regulated candidate genes as prognostic markers . Gene . 679 . 150–159 . December 2018 . 30193961 . 10.1016/j.gene.2018.09.003 . 52172531 .
  5. Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, Schmitt EK, Hallek M, Kreuzer KA . 6 . Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo . Neoplasia . 12 . 4 . 326–335 . April 2010 . 20360943 . 2847740 . 10.1593/neo.91972 .
  6. Boras K, Hamel PA . Alx4 binding to LEF-1 regulates N-CAM promoter activity . The Journal of Biological Chemistry . 277 . 2 . 1120–1127 . January 2002 . 11696550 . 10.1074/jbc.M109912200 . free .
  7. Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW . A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia . The Journal of Biological Chemistry . 275 . 1 . 651–656 . January 2000 . 10617663 . 10.1074/jbc.275.1.651 . free .
  8. Edlund S, Lee SY, Grimsby S, Zhang S, Aspenström P, Heldin CH, Landström M . Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis . Molecular and Cellular Biology . 25 . 4 . 1475–1488 . February 2005 . 15684397 . 548008 . 10.1128/MCB.25.4.1475-1488.2005 .
  9. Grueneberg DA, Pablo L, Hu KQ, August P, Weng Z, Papkoff J . A functional screen in human cells identifies UBF2 as an RNA polymerase II transcription factor that enhances the beta-catenin signaling pathway . Molecular and Cellular Biology . 23 . 11 . 3936–3950 . June 2003 . 12748295 . 155208 . 10.1128/MCB.23.11.3936-3950.2003 .
  10. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W . Functional interaction of beta-catenin with the transcription factor LEF-1 . Nature . 382 . 6592 . 638–642 . August 1996 . 8757136 . 10.1038/382638a0 . 4369341 . 1996Natur.382..638B .
  11. Labbé E, Letamendia A, Attisano L . Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways . Proceedings of the National Academy of Sciences of the United States of America . 97 . 15 . 8358–8363 . July 2000 . 10890911 . 26952 . 10.1073/pnas.150152697 . free . 2000PNAS...97.8358L .
  12. Barolo S, Posakony JW . Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling . Genes & Development . 16 . 10 . 1167–1181 . May 2002 . 12023297 . 10.1101/gad.976502 . . 1170 . 14376483 . free . In ... zebrafish, reporter transgenes containing the TOPFLASH promoter are expressed in certain Wnt-responsive cell types (...Dorsky et al. 2002). .
  13. Hecht A, Stemmler MP . Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4 . The Journal of Biological Chemistry . 278 . 6 . 3776–3785 . February 2003 . 12446687 . 10.1074/jbc.M210081200 . free .
  14. Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, Shibahara S . Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling . The EMBO Journal . 21 . 11 . 2703–2714 . June 2002 . 12032083 . 126018 . 10.1093/emboj/21.11.2703 .
  15. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R . PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies . Genes & Development . 15 . 23 . 3088–3103 . December 2001 . 11731474 . 312834 . 10.1101/gad.944801 .
  16. Kim K, Lu Z, Hay ED . Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT . Cell Biology International . 26 . 5 . 463–476 . 2002 . 12095232 . 10.1006/cbir.2002.0901 .
  17. Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV . 6 . LEF1 isoforms regulate cellular senescence and aging . bioRxiv . July 2023 . 37502913 . 10370160 . 10.1101/2023.07.20.549883 . Genomics .
  18. Web site: Entrez Gene: LEF1 lymphoid enhancer-binding factor 1.
  19. Oosterwegel M, van de Wetering M, Timmerman J, Kruisbeek A, Destree O, Meijlink F, Clevers H . Differential expression of the HMG box factors TCF-1 and LEF-1 during murine embryogenesis . Development . 118 . 2 . 439–448 . June 1993 . 8223271 . 10.1242/dev.118.2.439 .
  20. Novak A, Dedhar S . Signaling through beta-catenin and Lef/Tcf . Cellular and Molecular Life Sciences . 56 . 5-6 . 523–537 . October 1999 . 11212302 . 11146752 . 10.1007/s000180050449 .
  21. Rim EY, Kinney LK, Nusse R . β-catenin-mediated Wnt signal transduction proceeds through an endocytosis-independent mechanism . Molecular Biology of the Cell . 31 . 13 . 1425–1436 . June 2020 . 32320321 . 10.1101/2020.02.13.948380 .
  22. Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer KA . High lymphoid enhancer-binding factor-1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia . Hematology Reports . 2 . 1 . e3 . January 2010 . 22184516 . 3222268 . 10.4081/hr.2010.e3 .
  23. Eskandari E, Mahjoubi F, Motalebzadeh J . An integrated study on TFs and miRNAs in colorectal cancer metastasis and evaluation of three co-regulated candidate genes as prognostic markers . Gene . 679 . 150–159 . December 2018 . 30193961 . 10.1016/j.gene.2018.09.003 . 52172531 .
  24. Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, Schmitt EK, Hallek M, Kreuzer KA . 6 . Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo . Neoplasia . 12 . 4 . 326–335 . April 2010 . 20360943 . 2847740 . 10.1593/neo.91972 .
  25. Santiago L, Daniels G, Wang D, Deng FM, Lee P . Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment . American Journal of Cancer Research . 7 . 6 . 1389–1406 . 2017-06-01 . 28670499 . 5489786 .
  26. Liu RM, Liu G . Cell senescence and fibrotic lung diseases . Experimental Gerontology . 132 . 110836 . April 2020 . 31958492 . 7036279 . 10.1016/j.exger.2020.110836 .
  27. Fakhr E, Zare F, Azadmanesh K, Teimoori-Toolabi L . LEF1 silencing sensitizes colorectal cancer cells to oxaliplatin, 5-FU, and irinotecan . Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie . 143 . 112091 . November 2021 . 34474344 . 10.1016/j.biopha.2021.112091 . free .
  28. Basu . Paul . Jong . Ferdinand De . 2016-02-01 . Utopian archives, decolonial affordances Introduction to special issue . Social Anthropology/Anthropologie Sociale . en . 24 . 1 . 5–19 . 10.1111/1469-8676.12281 . 0964-0282.
  29. Boras K, Hamel PA . Alx4 binding to LEF-1 regulates N-CAM promoter activity . The Journal of Biological Chemistry . 277 . 2 . 1120–1127 . January 2002 . 11696550 . 10.1074/jbc.M109912200 . free .
  30. Kuijper S, Beverdam A, Kroon C, Brouwer A, Candille S, Barsh G, Meijlink F . Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes . Development . 132 . 7 . 1601–1610 . April 2005 . 15728667 . 10.1242/dev.01735 .
  31. Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW . A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia . The Journal of Biological Chemistry . 275 . 1 . 651–656 . January 2000 . 10617663 . 10.1074/jbc.275.1.651 . free .
  32. Nüsslein-Volhard C, Wieschaus E . Mutations affecting segment number and polarity in Drosophila . Nature . 287 . 5785 . 795–801 . October 1980 . 6776413 . 10.1038/287795a0 . 1980Natur.287..795N .
  33. Edlund S, Lee SY, Grimsby S, Zhang S, Aspenström P, Heldin CH, Landström M . Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis . Molecular and Cellular Biology . 25 . 4 . 1475–1488 . February 2005 . 15684397 . 548008 . 10.1128/MCB.25.4.1475-1488.2005 .
  34. Grueneberg DA, Pablo L, Hu KQ, August P, Weng Z, Papkoff J . A functional screen in human cells identifies UBF2 as an RNA polymerase II transcription factor that enhances the beta-catenin signaling pathway . Molecular and Cellular Biology . 23 . 11 . 3936–3950 . June 2003 . 12748295 . 155208 . 10.1128/MCB.23.11.3936-3950.2003 .
  35. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W . Functional interaction of beta-catenin with the transcription factor LEF-1 . Nature . 382 . 6592 . 638–642 . August 1996 . 8757136 . 10.1038/382638a0 . 4369341 . 1996Natur.382..638B .
  36. Labbé E, Letamendia A, Attisano L . Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways . Proceedings of the National Academy of Sciences of the United States of America . 97 . 15 . 8358–8363 . July 2000 . 10890911 . 26952 . 10.1073/pnas.150152697 . free . 2000PNAS...97.8358L .
  37. Barolo S, Posakony JW . Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling . Genes & Development . 16 . 10 . 1167–1181 . May 2002 . 12023297 . 10.1101/gad.976502 . . 1170 . 14376483 . free . In ... zebrafish, reporter transgenes containing the TOPFLASH promoter are expressed in certain Wnt-responsive cell types (...Dorsky et al. 2002). .
  38. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W . Functional interaction of beta-catenin with the transcription factor LEF-1 . Nature . 382 . 6592 . 638–642 . August 1996 . 8757136 . 10.1038/382638a0 . 1996Natur.382..638B .
  39. Hecht A, Stemmler MP . Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4 . The Journal of Biological Chemistry . 278 . 6 . 3776–3785 . February 2003 . 12446687 . 10.1074/jbc.M210081200 . free .
  40. Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, Shibahara S . Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling . The EMBO Journal . 21 . 11 . 2703–2714 . June 2002 . 12032083 . 126018 . 10.1093/emboj/21.11.2703 .
  41. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R . PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies . Genes & Development . 15 . 23 . 3088–3103 . December 2001 . 11731474 . 312834 . 10.1101/gad.944801 .