List of logic symbols explained

In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents,[1] and the LaTeX symbol.

Basic logic symbols

SymbolUnicode
value
(hexadecimal)
HTML
codes
LaTeX
symbol
Logic Name Read asCategoryExplanationExamples
scope"row" align="center"



U+21D2

U+2192

U+2283
⇒
→
⊃⇒
→
⊃

\Rightarrow

\implies

\implies

\to

\to or \rightarrow

\supset

\supset
material conditional (material implication)implies,
if P then Q,
it is not the case that P and not Q
propositional logic, Boolean algebra, Heyting algebra

AB

is false when is true and is false but true otherwise.

may mean the same as


(the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).

\supset

may mean the same as

(the symbol may also mean superset).
scope"row" align="center"

x=2x2=4

is true, but

x2=4x=2

is in general false
(since could be −2).
scope"row" align="center"



U+21D4

U+2194

U+2261
⇔
↔
≡⇔
↔
≡

\Leftrightarrow

\Leftrightarrow

\iff

\iff

\leftrightarrow

\leftrightarrow

\equiv

\equiv
material biconditional (material equivalence)if and only if, iff, xnorpropositional logic, Boolean algebra

A\LeftrightarrowB

is true only if both  and  are false, or both  and  are true. Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.
scope"row" align="center"

x+5=y+2\Leftrightarrowx+3=y

scope"row" align="center"

¬
~
!

U+00AC

U+007E

U+0021
¬
˜
!¬
˜
!

\neg

\lnot or \neg

\sim

\sim


negationnotpropositional logic, Boolean algebraThe statement

lnotA

is true if and only if  is false.

A slash placed through another operator is the same as

\neg

placed in front.
scope"row" align="center"

\neg(\negA)\LeftrightarrowA


xy\Leftrightarrow\neg(x=y)

scope"row" align="center"


·
&

U+2227

U+00B7

U+0026
∧
·
&∧
·
&

\wedge

\wedge or \land

\cdot

\&

\&<ref>Although this character is available in LaTeX, the MediaWiki TeX system does not support it.
logical conjunctionandpropositional logic, Boolean algebraThe statement A ∧ B is true if A and B are both true; otherwise, it is false.scope"row" align="center"

when n is a natural number.

scope"row" align="center"


+

U+2228

U+002B

U+2225
&#8744;
&#43;
&#8741;&or;
&plus;
&parallel;

\lor

\lor or \vee



\parallel

\parallel
logical (inclusive) disjunctionorpropositional logic, Boolean algebraThe statement A ∨ B is true if A or B (or both) are true; if both are false, the statement is false.scope"row" align="center"

when n is a natural number.

scope"row" align="center"




U+2295

U+22BB

U+21AE

U+2262
&#8853;
&#8891;
&#8622;
&#8802;&oplus;
&veebar;

&nequiv;

\oplus

\veebar

\veebar



\not\equiv

\not\equiv
exclusive disjunctionxor,
either ... or ... (but not both)
propositional logic, Boolean algebraThe statement

AB

is true when either A or B, but not both, are true. This is equivalent to
¬(A ↔ B), hence the symbols

\nleftrightarrow

and

\not\equiv

.
scope"row" align="center"

lnotAA

is always true and

AA

is always false (if vacuous truth is excluded).
scope"row" align="center"


T
1



U+22A4





&#8868;
&top;

\top

\top



true (tautology)top, truth, tautology, verum, full clausepropositional logic, Boolean algebra, first-order logic

\top

denotes a proposition that is always true.
scope"row" align="center"

The proposition

\top\lorP

is always true since at least one of the two is unconditionally true.
scope"row" align="center"


F
0



U+22A5





&#8869;&perp;



\bot

\bot



false (contradiction)bottom, falsity, contradiction, falsum, empty clausepropositional logic, Boolean algebra, first-order logic

\bot

denotes a proposition that is always false.
The symbol ⊥ may also refer to perpendicular lines.
scope"row" align="center"

The proposition

\bot\wedgeP

is always false since at least one of the two is unconditionally false.
scope"row" align="center"


U+2200


&#8704;&forall;


\forall

\forall


universal quantificationgiven any, for all, for every, for each, for anyfirst-order logic

\forallx

 

P(x)

or

(x)

 

P(x)

says “given any

x

,

x

has property

P

.”
scope"row" align="center"

\foralln\isinN:n2\geqn.

scope"row" align="center"

U+2203&#8707;&exist;

\exists

\exists
existential quantificationthere exists, for somefirst-order logic

\existsx

 

P(x)

says “there exists an

x

(at least one) such that

x

has property

P

.”
scope"row" align="center"

\existsn\isinN:

n is even.
scope"row" align="center"

∃!

U+2203 U+0021&#8707; &#33;&exist;

\exists

\exists !uniqueness quantificationthere exists exactly onefirst-order logic (abbreviation)

\exists!x

P(x)

says “there exists exactly one

x

such that

x

has property

P

.” Only

\forall

and

\exists

are part of formal logic.

\exists

x

P(x)

is an abbreviation for

\existsx\forally(P(y)\leftrightarrowy=x)

scope"row" align="center"

\exists!n\isinN:n+5=2n.

scope"row" align="center" U+0028 U+0029&#40; &#41;&lpar;
&rpar;

(~)

precedence groupingparentheses; bracketsalmost all logic syntaxes, as well as metalanguagePerform the operations inside the parentheses first.scope"row" align="center"

, but .

scope"row" align="center"

D

U+1D53B&#120123;&Dopf;\mathbbdomain of discoursedomain of discoursemetalanguage (first-order logic semantics)scope"row" align="center"

D:R

scope"row" align="center"

U+22A2&#8866;&vdash;

\vdash

\vdash
turnstilesyntactically entails (proves)metalanguage (metalogic)

A\vdashB

says “

B

is
a theorem of

A

”.
In other words,

A

proves

B

via a deductive system.
scope"row" align="center"

(AB)\vdash(lnotBlnotA)


(eg. by using natural deduction)
scope"row" align="center"

U+22A8&#8872;&vDash;

\vDash

\vDash, \models
double turnstilesemantically entailsmetalanguage (metalogic)

A\vDashB

says
“in every model,
it is not the case that

A

is true and

B

is false”.
scope"row" align="center"

(AB)\vDash(lnotBlnotA)


(eg. by using truth tables)
scope"row" align="center"



U+2261

U+27DA

U+21D4
&#8801;—
&#8660;&equiv;—&hArr;

\equiv

\equiv



\Leftrightarrow

\Leftrightarrow
logical equivalenceis logically equivalent tometalanguage (metalogic)It’s when

A\vDashB

and

B\vDashA

. Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.
scope"row" align="center"

(AB)\equiv(lnotA\lorB)

scope"row" align="center"

U+22AC⊬\nvdashdoes not syntactically entail (does not prove)metalanguage (metalogic)

A\nvdashB

says “

B

is
not a theorem of

A

”.
In other words,

B

is not derivable from

A

via a deductive system.
scope"row" align="center"

A\lorB\nvdashA\wedgeB

scope"row" align="center"

U+22AD⊭\nvDashdoes not semantically entailmetalanguage (metalogic)

A\nvDashB

says “

A

does not guarantee the truth of

B

 ”.
In other words,

A

does not make

B

true.
scope"row" align="center"

A\lorB\nvDashA\wedgeB

scope"row" align="center"

U+25A1

\Box

\Box
necessity (in a model)box; it is necessary thatmodal logicmodal operator for “it is necessary that”
in alethic logic, “it is provable that”
in provability logic, “it is obligatory that”
in deontic logic, “it is believed that”
in doxastic logic.
scope"row" align="center"

\Box\forallxP(x)

says “it is necessary that everything has property

P

scope"row" align="center"

U+25C7

\Diamond

\Diamond
possibility (in a model)diamond;
it is possible that
modal logicmodal operator for “it is possible that”, (in most modal logics it is defined as “¬□¬”, “it is not necessarily not”).scope"row" align="center"

\Diamond\existsxP(x)

says “it is possible that something has property

P

scope"row" align="center"

U+2234∴\thereforethereforethereforemetalanguageabbreviation for “therefore”.
scope"row" align="center"

U+2235∵\becausebecausebecausemetalanguageabbreviation for “because”.
scope"row" align="center"



U+2254

U+225C

U+225D
&#8788;&coloneq;






:=

=

\triangleq

\triangleq

\stackrel{\scriptscriptstyledef

}
\stackrel

Notes and References

  1. Web site: Named character references. HTML 5.1 Nightly. W3C. 9 September 2015.