List of space groups explained

There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.

Symbols

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.

These are the Bravais lattices in three dimensions:

A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.

a

,

b

, or

c

: glide translation along half the lattice vector of this face

n

: glide translation along half the diagonal of this face

d

: glide planes with translation along a quarter of a face diagonal

e

: two glides with the same glide plane and translation along two (different) half-lattice vectors.

A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is

\color{Black}\tfrac{360\circ}{n}

. The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction \frac or n/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane along a.

In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form

y
\Gamma
x
which specifies the Bravais lattice. Here

x\in\{t,m,o,q,rh,h,c\}

is the lattice system, and

y\in\{\empty,b,v,f\}

is the centering type.[1]

In Fedorov symbol, the type of space group is denoted as s (symmorphic), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.

Symmorphic

The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups, for example, the space groups P4/mmm (

P\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}

, 36s) and I4/mmm (

I\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}

, 37s).

Hemisymmorphic

The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Hemisymmorphic space groups contain the axial combination 422, which are P4/mcc (

P\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{c}

, 35h), P4/nbm (

P\tfrac{4}{n}\tfrac{2}{b}\tfrac{2}{m}

, 36h), P4/nnc (

P\tfrac{4}{n}\tfrac{2}{n}\tfrac{2}{c}

, 37h), and I4/mcm (

I\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{m}

, 38h).

Asymmorphic

The remaining 103 space groups are asymmorphic, for example, those derived from the point group 4/mmm (

\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}

).

List of triclinic

Triclinic crystal system! Number! Point group! Orbifold! Short name! Full name! Schoenflies! Fedorov! Shubnikov! Fibrifold
11

1

P1P 1

\GammatC

1
1
1s

(a/b/c)1

(\circ)

2

x

PP

\GammatC

1
i
2s

(a/b/c)\tilde2

(2222)

List of monoclinic

Full name(s)! Schoenflies! Fedorov! Shubnikov! Fibrifold (primary)! Fibrifold (secondary)
32

22

P2P 1 2 1P 1 1 2

\GammamC

1
2
3s

(b:(c/a)):2

(20202020)

({*}0{*}0)

4P21P 1 21 1P 1 1 21

\GammamC

2
2
1a

(b:(c/a)):21

(21212121)

(\bar{ x }\bar{ x })

5C2C 1 2 1B 1 1 2
3
\Gamma
2
4s

\left(\tfrac{a+b}{2}/b:(c/a)\right):2

(20202121)

({*}1{*}1)

,

({*}\bar{ x })

6m

*

PmP 1 m 1P 1 1 m

\GammamC

1
s
5s

(b:(c/a))m

[\circ0]

({*}{}{*}{})

7PcP 1 c 1P 1 1 b

\GammamC

2
s
1h

(b:(c/a))\tildec

(\bar\circ0)

({*}{:}{*}{:})

,

({ x }{ x }0)

8CmC 1 m 1B 1 1 m
3
\Gamma
s
6s

\left(\tfrac{a+b}{2}/b:(c/a)\right)m

[\circ1]

({*}{}{*}{:})

,

({*}{}{ x })

9CcC 1 c 1B 1 1 b
4
\Gamma
s
2h

\left(\tfrac{a+b}{2}/b:(c/a)\right)\tildec

(\bar\circ1)

({*}{:}{ x })

,

({ x }{ x }1)

102/m

2*

P2/mP 1 2/m 1P 1 1 2/m

\GammamC

1
2h
7s

(b:(c/a))m:2

[20202020]

[*2{}22{}2)

|- align=center|11||P21/m||P 1 21/m 1||P 1 1 21/m ||

\GammamC

2
2h
|| 2a ||

(b:(c/a))m:21

||

[21212121]

||

(22{*}{})

|- align=center|12||C2/m||C 1 2/m 1||B 1 1 2/m ||
3
\Gamma
2h
|| 8s ||

\left(\tfrac{a+b}{2}/b:(c/a)\right)m:2

||

[20202121]

||

(*2{}22{:}2)

,

(2\bar{*}2{}2)

|- align=center|13||P2/c||P 1 2/c 1||P 1 1 2/b ||

\GammamC

4
2h
|| 3h ||

(b:(c/a))\tildec:2

||

(202022)

||

(*2{:}22{:}2)

,

(22{*}0)

|- align=center|14||P21/c||P 1 21/c 1||P 1 1 21/b ||

\GammamC

5
2h
|| 3a ||

(b:(c/a))\tildec:21

||

(212122)

||

(22{*}{:})

,

(22{ x })

|- align=center|15||C2/c||C 1 2/c 1||B 1 1 2/b ||
6
\Gamma
2h
|| 4h ||

\left(\tfrac{a+b}{2}/b:(c/a)\right)\tildec:2

||

(202122)

||

(2\bar{*}2{:}2)

,

(22{*}1)

|}

List of orthorhombic

Orthorhombic crystal system!Number! Point group! Orbifold! Short name! Full name! Schoenflies! Fedorov! Shubnikov! Fibrifold (primary)! Fibrifold (secondary)
16222

222

P222P 2 2 2

\GammaoD

1
2
9s

(c:a:b):2:2

(*20202020)

17P2221P 2 2 21

\GammaoD

2
2
4a

(c:a:b):21:2

(*21212121)

(2020{*})

18P21212P 21 21 2

\GammaoD

3
2
7a

(c:a:b):2

21

(2020\bar{ x })

(2121{*})

19P212121P 21 21 21

\GammaoD

4
2
8a

(c:a:b):21

21

(2121\bar{ x })

20C2221C 2 2 21
5
\Gamma
2
5a

\left(\tfrac{a+b}{2}:c:a:b\right):21:2

(21{*}2121)

(2021{*})

21C222C 2 2 2
6
\Gamma
2
10s

\left(\tfrac{a+b}{2}:c:a:b\right):2:2

(20{*}2020)

(*20202121)

22F222F 2 2 2
7
\Gamma
2
12s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right):2:2

(*20212021)

23I222I 2 2 2
8
\Gamma
2
11s

\left(\tfrac{a+b+c}{2}/c:a:b\right):2:2

(21{*}2020)

24I212121I 21 21 21
9
\Gamma
2
6a

\left(\tfrac{a+b+c}{2}/c:a:b\right):2:21

(20{*}2121)

25mm2

*22

Pmm2P m m 2

\GammaoC

1
2v
13s

(c:a:b):m2

(*{}2{}2{}2{}2)

[{*}0{}{*}0{}]

26Pmc21P m c 21

\GammaoC

2
2v
9a

(c:a:b):\tildec21

(*{}2{:}2{}2{:}2)

(\bar{*}{}\bar{*}{})

,

[{ x 0}{ x 0}]

27Pcc2P c c 2

\GammaoC

3
2v
5h

(c:a:b):\tildec2

(*{:}2{:}2{:}2{:}2)

(\bar{*}0\bar{*}0)

28Pma2P m a 2

\GammaoC

4
2v
6h

(c:a:b):\tildea2

(2020{*}{})

[{*}0{:}{*}0{:}]

,

(*{}{*}0)

29Pca21P c a 21

\GammaoC

5
2v
11a

(c:a:b):\tildea21

(2121{*}{:})

(\bar{*}{:}\bar{*}{:})

30Pnc2P n c 2

\GammaoC

6
2v
7h

(c:a:b):\tildec\odot2

(2020{*}{:})

(\bar{*}1\bar{*}1)

,

({*}0{ x }0)

31Pmn21P m n 21

\GammaoC

7
2v
10a

(c:a:b):\widetilde{ac}21

(2121{*}{})

(*{}\bar{ x })

,

[{ x }0{ x }1]

32Pba2P b a 2

\GammaoC

8
2v
9h

(c:a:b):\tildea\odot2

(2020{ x }0)

(*{:}{*}0)

33Pna21P n a 21

\GammaoC

9
2v
12a

(c:a:b):\tildea\odot21

(2121{ x })

(*{:}{ x })

,

({ x }{ x }1)

34Pnn2P n n 2

\GammaoC

10
2v
8h

(c:a:b):\widetilde{ac}\odot2

(2020{ x }1)

(*0{ x }1)

35Cmm2C m m 2
11
\Gamma
2v
14s

\left(\tfrac{a+b}{2}:c:a:b\right):m2

(20{*}{}2{}2)

[*0{}{*}0{:}]

36Cmc21C m c 21
12
\Gamma
2v
13a

\left(\tfrac{a+b}{2}:c:a:b\right):\tildec21

(21{*}{}2{:}2)

(\bar{*}{}\bar{*}{:})

,

[{ x }1{ x }1]

37Ccc2C c c 2
13
\Gamma
2v
10h

\left(\tfrac{a+b}{2}:c:a:b\right):\tildec2

(20{*}{:}2{:}2)

(\bar{*}0\bar{*}1)

38Amm2A m m 2
14
\Gamma
2v
15s

\left(\tfrac{b+c}{2}/c:a:b\right):m2

(*{}2{}2{}2{:}2)

[{*}1{}{*}1{}]

,

[*{}{ x }0]

39Aem2A b m 2
15
\Gamma
2v
11h

\left(\tfrac{b+c}{2}/c:a:b\right):m21

(*{}2{:}2{:}2{:}2)

[{*}1{:}{*}1{:}]

,

(\bar{*}{}\bar{*}0)

40Ama2A m a 2
16
\Gamma
2v
12h

\left(\tfrac{b+c}{2}/c:a:b\right):\tildea2

(2021{*}{})

(*{}{*}1)

,

[*{:}{ x }1]

41Aea2A b a 2
17
\Gamma
2v
13h

\left(\tfrac{b+c}{2}/c:a:b\right):\tildea21

(2021{*}{:})

(*{:}{*}1)

,

(\bar{*}{:}\bar{*}1)

42Fmm2F m m 2
18
\Gamma
2v
17s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right):m2

(*{}2{}2{:}2{:}2)

[{*}1{}{*}1{:}]

43Fdd2F d d 2
19
\Gamma
2v
16h

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right):\tfrac{1}{2}\widetilde{ac}\odot2

(2021{ x })

({*}1{ x })

44Imm2I m m 2
20
\Gamma
2v
16s

\left(\tfrac{a+b+c}{2}/c:a:b\right):m2

(21{*}{}2{}2)

[*{}{ x }1]

45Iba2I b a 2
21
\Gamma
2v
15h

\left(\tfrac{a+b+c}{2}/c:a:b\right):\tildec2

(21{*}{:}2{:}2)

(\bar{*}{:}\bar{*}0)

46Ima2I m a 2
22
\Gamma
2v
14h

\left(\tfrac{a+b+c}{2}/c:a:b\right):\tildea2

(20{*}{}2{:}2)

(\bar{*}{}\bar{*}1)

,

[*{:}{ x }0]

47

\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}

*222

PmmmP 2/m 2/m 2/m

\GammaoD

1
2h
18s

\left(c:a:b\right)m:2m

[*{}2{}2{}2{}2]

48PnnnP 2/n 2/n 2/n

\GammaoD

2
2h
19h

\left(c:a:b\right)\widetilde{ab}:2\odot\widetilde{ac}

(2\bar{*}12020)

49PccmP 2/c 2/c 2/m

\GammaoD

3
2h
17h

\left(c:a:b\right)m:2\tildec

[*{:}2{:}2{:}2{:}2]

(*20202{}2)

50PbanP 2/b 2/a 2/n

\GammaoD

4
2h
18h

\left(c:a:b\right)\widetilde{ab}:2\odot\tildea

(2\bar{*}02020)

(*20202{:}2)

51PmmaP 21/m 2/m 2/a

\GammaoD

5
2h
14a

\left(c:a:b\right)\tildea:2m

[2020{*}{}]

[*{}2{:}2{}2{:}2]

,

[*2{}2{}2{}2]

52PnnaP 2/n 21/n 2/a

\GammaoD

6
2h
17a

\left(c:a:b\right)\tildea:2\odot\widetilde{ac}

(202\bar{*}1)

(20{*}2{:}2)

,

(2\bar{*}2121)

53PmnaP 2/m 2/n 21/a

\GammaoD

7
2h
15a

\left(c:a:b\right)\tildea:21\widetilde{ac}

[2020{*}{:}]

(*21212{}2)

,

(20{*}2{}2)

54PccaP 21/c 2/c 2/a

\GammaoD

8
2h
16a

\left(c:a:b\right)\tildea:2\tildec

(202\bar{*}0)

(*2{:}2{:}2{:}2)

,

(*21212{:}2)

55PbamP 21/b 21/a 2/m

\GammaoD

9
2h
22a

\left(c:a:b\right)m:2\odot\tildea

[2020{ x }0]

(*2{}2{:}2{}2)

56PccnP 21/c 21/c 2/n

\GammaoD

10
2h
27a

\left(c:a:b\right)\widetilde{ab}:2\tildec

(2\bar{*}{:}2{:}2)

(212\bar{*}0)

57PbcmP 2/b 21/c 21/m

\GammaoD

11
2h
23a

\left(c:a:b\right)m:21\odot\tildec

(202\bar{*}{})

(*2{:}2{}2{:}2)

,

[2121{*}{:}]

58PnnmP 21/n 21/n 2/m

\GammaoD

12
2h
25a

\left(c:a:b\right)m:2\odot\widetilde{ac}

[2020{ x }1]

(21{*}2{}2)

59PmmnP 21/m 21/m 2/n

\GammaoD

13
2h
24a

\left(c:a:b\right)\widetilde{ab}:2m

(2\bar{*}{}2{}2)

[2121{*}{}]

60PbcnP 21/b 2/c 21/n

\GammaoD

14
2h
26a

\left(c:a:b\right)\widetilde{ab}:21\odot\tildec

(202\bar{*}{:})

(21{*}2{:}2)

,

(212\bar{*}1)

61PbcaP 21/b 21/c 21/a

\GammaoD

15
2h
29a

\left(c:a:b\right)\tildea:21\odot\tildec

(212\bar{*}{:})

62PnmaP 21/n 21/m 21/a

\GammaoD

16
2h
28a

\left(c:a:b\right)\tildea:21\odotm

(212\bar{*}{})

(2\bar{*}{}2{:}2)

,

[2121{ x }]

63CmcmC 2/m 2/c 21/m
17
\Gamma
2h
18a

\left(\tfrac{a+b}{2}:c:a:b\right)m:21\tildec

[2021{*}{}]

(*2{}2{}2{:}2)

,

[21{*}{}2{:}2]

64CmceC 2/m 2/c 21/a
18
\Gamma
2h
19a

\left(\tfrac{a+b}{2}:c:a:b\right)\tildea:21\tildec

[2021{*}{:}]

(*2{}2{:}2{:}2)

,

(*212{}2{:}2)

65CmmmC 2/m 2/m 2/m
19
\Gamma
2h
19s

\left(\tfrac{a+b}{2}:c:a:b\right)m:2m

[20{*}{}2{}2]

[*{}2{}2{}2{:}2]

66CccmC 2/c 2/c 2/m
20
\Gamma
2h
20h

\left(\tfrac{a+b}{2}:c:a:b\right)m:2\tildec

[20{*}{:}2{:}2]

(*20212{}2)

67CmmeC 2/m 2/m 2/e
21
\Gamma
2h
21h

\left(\tfrac{a+b}{2}:c:a:b\right)\tildea:2m

(*202{}2{}2)

[*{}2{:}2{:}2{:}2]

68CcceC 2/c 2/c 2/e
22
\Gamma
2h
22h

\left(\tfrac{a+b}{2}:c:a:b\right)\tildea:2\tildec

(*202{:}2{:}2)

(*20212{:}2)

69FmmmF 2/m 2/m 2/m
23
\Gamma
2h
21s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right)m:2m

[*{}2{}2{:}2{:}2]

70FdddF 2/d 2/d 2/d
24
\Gamma
2h
24h

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right)\tfrac{1}{2}\widetilde{ab}:2\odot\tfrac{1}{2}\widetilde{ac}

(2\bar{*}2021)

71ImmmI 2/m 2/m 2/m
25
\Gamma
2h
20s

\left(\tfrac{a+b+c}{2}/c:a:b\right)m:2m

[21{*}{}2{}2]

72IbamI 2/b 2/a 2/m
26
\Gamma
2h
23h

\left(\tfrac{a+b+c}{2}/c:a:b\right)m:2\tildec

[21{*}{:}2{:}2]

(*202{}2{:}2)

73IbcaI 2/b 2/c 2/a
27
\Gamma
2h
21a

\left(\tfrac{a+b+c}{2}/c:a:b\right)\tildea:2\tildec

(*212{:}2{:}2)

74ImmaI 2/m 2/m 2/a
28
\Gamma
2h
20a

\left(\tfrac{a+b+c}{2}/c:a:b\right)\tildea:2m

(*212{}2{}2)

[20{*}{}2{:}2]

List of tetragonal

Tetragonal crystal system!Number! Point group! Orbifold! Short name! Full name! Schoenflies! Fedorov! Shubnikov! Fibrifold
754

44

P4P 4

\GammaqC

1
4
22s

(c:a:a):4

(404020)

76P41P 41

\GammaqC

2
4
30a

(c:a:a):41

(414121)

77P42P 42

\GammaqC

3
4
33a

(c:a:a):42

(424220)

78P43P 43

\GammaqC

4
4
31a

(c:a:a):43

(414121)

79I4I 4
5
\Gamma
4
23s

\left(\tfrac{a+b+c}{2}/c:a:a\right):4

(424021)

80I41I 41
6
\Gamma
4
32a

\left(\tfrac{a+b+c}{2}/c:a:a\right):41

(434120)

81

2 x

PP

\GammaqS

1
4
26s

(c:a:a):\tilde4

(4420)

82II
2
\Gamma
4
27s

\left(\tfrac{a+b+c}{2}/c:a:a\right):\tilde4

(4421)

834/m

4*

P4/mP 4/m

\GammaqC

1
4h
28s

(c:a:a)m:4

[404020]

84P42/mP 42/m

\GammaqC

2
4h
41a

(c:a:a)m:42

[424220]

85P4/nP 4/n

\GammaqC

3
4h
29h

(c:a:a)\widetilde{ab}:4

(4402)

86P42/nP 42/n

\GammaqC

4
4h
42a

(c:a:a)\widetilde{ab}:42

(4422)

87I4/mI 4/m
5
\Gamma
4h
29s

\left(\tfrac{a+b+c}{2}/c:a:a\right)m:4

[424021]

88I41/aI 41/a
6
\Gamma
4h
40a

\left(\tfrac{a+b+c}{2}/c:a:a\right)\tildea:41

(4412)

89422

224

P422P 4 2 2

\GammaqD

1
4
30s

(c:a:a):4:2

(*404020)

90P4212P4212

\GammaqD

2
4
43a

(c:a:a):4

21

(40{*}20)

91P4122P 41 2 2

\GammaqD

3
4
44a

(c:a:a):41:2

(*414121)

92P41212P 41 21 2

\GammaqD

4
4
48a

(c:a:a):41

21

(41{*}21)

93P4222P 42 2 2

\GammaqD

5
4
47a

(c:a:a):42:2

(*424220)

94P42212P 42 21 2

\GammaqD

6
4
50a

(c:a:a):42

21

(42{*}20)

95P4322P 43 2 2

\GammaqD

7
4
45a

(c:a:a):43:2

(*414121)

96P43212P 43 21 2

\GammaqD

8
4
49a

(c:a:a):43

21

(41{*}21)

97I422I 4 2 2
9
\Gamma
4
31s

\left(\tfrac{a+b+c}{2}/c:a:a\right):4:2

(*424021)

98I4122I 41 2 2
10
\Gamma
4
46a

\left(\tfrac{a+b+c}{2}/c:a:a\right):4:21

(*434120)

994mm

*44

P4mmP 4 m m

\GammaqC

1
4v
24s

(c:a:a):4 ⋅ m

(*{}4{}4{}2)

100P4bmP 4 b m

\GammaqC

2
4v
26h

(c:a:a):4\odot\tildea

(40{*}{}2)

101P42cmP 42 c m

\GammaqC

3
4v
37a

(c:a:a):42 ⋅ \tildec

(*{:}4{}4{:}2)

102P42nmP 42 n m

\GammaqC

4
4v
38a

(c:a:a):42\odot\widetilde{ac}

(42{*}{}2)

103P4ccP 4 c c

\GammaqC

5
4v
25h

(c:a:a):4 ⋅ \tildec

(*{:}4{:}4{:}2)

104P4ncP 4 n c

\GammaqC

6
4v
27h

(c:a:a):4\odot\widetilde{ac}

(40{*}{:}2)

105P42mcP 42 m c

\GammaqC

7
4v
36a

(c:a:a):42 ⋅ m

(*{}4{:}4{}2)

106P42bcP 42 b c

\GammaqC

8
4v
39a

(c:a:a):4\odot\tildea

(42{*}{:}2)

107I4mmI 4 m m
9
\Gamma
4v
25s

\left(\tfrac{a+b+c}{2}/c:a:a\right):4 ⋅ m

(*{}4{}4{:}2)

108I4cmI 4 c m
10
\Gamma
4v
28h

\left(\tfrac{a+b+c}{2}/c:a:a\right):4 ⋅ \tildec

(*{}4{:}4{:}2)

109I41mdI 41 m d
11
\Gamma
4v
34a

\left(\tfrac{a+b+c}{2}/c:a:a\right):41\odotm

(41{*}{}2)

110I41cdI 41 c d
12
\Gamma
4v
35a

\left(\tfrac{a+b+c}{2}/c:a:a\right):41\odot\tildec

(41{*}{:}2)

1112m

2{*}2

P2mP 2 m

\GammaqD

1
2d
32s

(c:a:a):\tilde4:2

(*4{}420)

112P2cP 2 c

\GammaqD

2
2d
30h

(c:a:a):\tilde4

2

(*4{:}420)

113P21mP 21 m

\GammaqD

3
2d
52a

(c:a:a):\tilde4\widetilde{ab}

(4\bar{*}{}2)

114P21cP 21 c

\GammaqD

4
2d
53a

(c:a:a):\tilde4\widetilde{abc}

(4\bar{*}{:}2)

115Pm2P m 2

\GammaqD

5
2d
33s

(c:a:a):\tilde4m

(*{}44{}2)

116Pc2P c 2

\GammaqD

6
2d
31h

(c:a:a):\tilde4\tildec

(*{:}44{:}2)

117Pb2P b 2

\GammaqD

7
2d
32h

(c:a:a):\tilde4\odot\tildea

(4\bar{*}020)

118Pn2P n 2

\GammaqD

8
2d
33h

(c:a:a):\tilde4\widetilde{ac}

(4\bar{*}120)

119Im2I m 2
9
\Gamma
2d
35s

\left(\tfrac{a+b+c}{2}/c:a:a\right):\tilde4m

(*4{}421)

120Ic2I c 2
10
\Gamma
2d
34h

\left(\tfrac{a+b+c}{2}/c:a:a\right):\tilde4\tildec

(*4{:}421)

121I2mI 2 m
11
\Gamma
2d
34s

\left(\tfrac{a+b+c}{2}/c:a:a\right):\tilde4:2

(*{}44{:}2)

122I2dI 2 d
12
\Gamma
2d
51a

\left(\tfrac{a+b+c}{2}/c:a:a\right):\tilde4\odot\tfrac{1}{2}\widetilde{abc}

(4\bar{*}21)

1234/m 2/m 2/m

*224

P4/mmmP 4/m 2/m 2/m

\GammaqD

1
4h
36s

(c:a:a)m:4 ⋅ m

[*{}4{}4{}2]

124P4/mccP 4/m 2/c 2/c

\GammaqD

2
4h
35h

(c:a:a)m:4 ⋅ \tildec

[*{:}4{:}4{:}2]

125P4/nbmP 4/n 2/b 2/m

\GammaqD

3
4h
36h

(c:a:a)\widetilde{ab}:4\odot\tildea

(*404{}2)

126P4/nncP 4/n 2/n 2/c

\GammaqD

4
4h
37h

(c:a:a)\widetilde{ab}:4\odot\widetilde{ac}

(*404{:}2)

127P4/mbmP 4/m 21/b 2/m

\GammaqD

5
4h
54a

(c:a:a)m:4\odot\tildea

[40{*}{}2]

128P4/mncP 4/m 21/n 2/c

\GammaqD

6
4h
56a

(c:a:a)m:4\odot\widetilde{ac}

[40{*}{:}2]

129P4/nmmP 4/n 21/m 2/m

\GammaqD

7
4h
55a

(c:a:a)\widetilde{ab}:4 ⋅ m

(*4{}4{}2)

130P4/nccP 4/n 21/c 2/c

\GammaqD

8
4h
57a

(c:a:a)\widetilde{ab}:4 ⋅ \tildec

(*4{:}4{:}2)

131P42/mmcP 42/m 2/m 2/c

\GammaqD

9
4h
60a

(c:a:a)m:42 ⋅ m

[*{}4{:}4{}2]

132P42/mcmP 42/m 2/c 2/m

\GammaqD

10
4h
61a

(c:a:a)m:42 ⋅ \tildec

[*{:}4{}4{:}2]

133P42/nbcP 42/n 2/b 2/c

\GammaqD

11
4h
63a

(c:a:a)\widetilde{ab}:42\odot\tildea

(*424{:}2)

134P42/nnmP 42/n 2/n 2/m

\GammaqD

12
4h
62a

(c:a:a)\widetilde{ab}:42\odot\widetilde{ac}

(*424{}2)

135P42/mbcP 42/m 21/b 2/c

\GammaqD

13
4h
66a

(c:a:a)m:42\odot\tildea

[42{*}{:}2]

136P42/mnmP 42/m 21/n 2/m

\GammaqD

14
4h
65a

(c:a:a)m:42\odot\widetilde{ac}

[42{*}{}2]

137P42/nmcP 42/n 21/m 2/c

\GammaqD

15
4h
67a

(c:a:a)\widetilde{ab}:42 ⋅ m

(*4{}4{:}2)

138P42/ncmP 42/n 21/c 2/m

\GammaqD

16
4h
65a

(c:a:a)\widetilde{ab}:42 ⋅ \tildec

(*4{:}4{}2)

139I4/mmmI 4/m 2/m 2/m
17
\Gamma
4h
37s

\left(\tfrac{a+b+c}{2}/c:a:a\right)m:4 ⋅ m

[*{}4{}4{:}2]

140I4/mcmI 4/m 2/c 2/m
18
\Gamma
4h
38h

\left(\tfrac{a+b+c}{2}/c:a:a\right)m:4 ⋅ \tildec

[*{}4{:}4{:}2]

141I41/amdI 41/a 2/m 2/d
19
\Gamma
4h
59a

\left(\tfrac{a+b+c}{2}/c:a:a\right)\tildea:41\odotm

(*414{}2)

142I41/acdI 41/a 2/c 2/d
20
\Gamma
4h
58a

\left(\tfrac{a+b+c}{2}/c:a:a\right)\tildea:41\odot\tildec

(*414{:}2)

List of trigonal

Trigonal crystal system!Number! Point group! Orbifold! Short name! Full name! Schoenflies! Fedorov! Shubnikov! Fibrifold
1433

33

P3P 3

\GammahC

1
3
38s

(c:(a/a)):3

(303030)

144P31P 31

\GammahC

2
3
68a

(c:(a/a)):31

(313131)

145P32P 32

\GammahC

3
3
69a

(c:(a/a)):32

(313131)

146R3R 3

\Gammarh

4
C
3
39s

(a/a/a)/3

(303132)

147

3 x

PP

\GammahC

1
3i
51s

(c:(a/a)):\tilde6

(6302)

148RR

\Gammarh

2
C
3i
52s

(a/a/a)/\tilde6

(6312)

14932

223

P312P 3 1 2

\GammahD

1
3
45s

(c:(a/a)):2:3

(*303030)

150P321P 3 2 1

\GammahD

2
3
44s

(c:(a/a))2:3

(30{*}30)

151P3112P 31 1 2

\GammahD

3
3
72a

(c:(a/a)):2:31

(*313131)

152P3121P 31 2 1

\GammahD

4
3
70a

(c:(a/a))2:31

(31{*}31)

153P3212P 32 1 2

\GammahD

5
3
73a

(c:(a/a)):2:32

(*313131)

154P3221P 32 2 1

\GammahD

6
3
71a

(c:(a/a))2:32

(31{*}31)

155R32R 3 2

\Gammarh

7
D
3
46s

(a/a/a)/3:2

(*303132)

1563m

*33

P3m1P 3 m 1

\GammahC

1
3v
40s

(c:(a/a)):m3

(*{}3{}3{}3)

157P31mP 3 1 m

\GammahC

2
3v
41s

(c:(a/a))m3

(30{*}{}3)

158P3c1P 3 c 1

\GammahC

3
3v
39h

(c:(a/a)):\tildec:3

(*{:}3{:}3{:}3)

159P31cP 3 1 c

\GammahC

4
3v
40h

(c:(a/a))\tildec:3

(30{*}{:}3)

160R3mR 3 m

\Gammarh

5
C
3v
42s

(a/a/a)/3 ⋅ m

(31{*}{}3)

161R3cR 3 c

\Gammarh

6
C
3v
41h

(a/a/a)/3 ⋅ \tildec

(31{*}{:}3)

162 2/m

2{*}3

P1mP 1 2/m

\GammahD

1
3d
56s

(c:(a/a))m\tilde6

(*{}6302)

163P1cP 1 2/c

\GammahD

2
3d
46h

(c:(a/a))\tildec\tilde6

(*{:}6302)

164Pm1P 2/m 1

\GammahD

3
3d
55s

(c:(a/a)):m\tilde6

(*6{}3{}2)

165Pc1P 2/c 1

\GammahD

4
3d
45h

(c:(a/a)):\tildec\tilde6

(*6{:}3{:}2)

166RmR 2/m

\Gammarh

5
D
3d
57s

(a/a/a)/\tilde6m

(*{}6312)

167RcR 2/c

\Gammarh

6
D
3d
47h

(a/a/a)/\tilde6\tildec

(*{:}6312)

List of hexagonal

Hexagonal crystal system!Number! Point group! Orbifold! Short name! Full name! Schoenflies! Fedorov! Shubnikov! Fibrifold
1686

66

P6P 6

\GammahC

1
6
49s

(c:(a/a)):6

(603020)

169P61P 61

\GammahC

2
6
74a

(c:(a/a)):61

(613121)

170P65P 65

\GammahC

3
6
75a

(c:(a/a)):65

(613121)

171P62P 62

\GammahC

4
6
76a

(c:(a/a)):62

(623220)

172P64P 64

\GammahC

5
6
77a

(c:(a/a)):64

(623220)

173P63P 63

\GammahC

6
6
78a

(c:(a/a)):63

(633021)

174

3*

PP

\GammahC

1
3h
43s

(c:(a/a)):3:m

[303030]

1756/m

6*

P6/mP 6/m

\GammahC

1
6h
53s

(c:(a/a))m:6

[603020]

176P63/mP 63/m

\GammahC

2
6h
81a

(c:(a/a))m:63

[633021]

177622

226

P622P 6 2 2

\GammahD

1
6
54s

(c:(a/a))2:6

(*603020)

178P6122P 61 2 2

\GammahD

2
6
82a

(c:(a/a))2:61

(*613121)

179P6522P 65 2 2

\GammahD

3
6
83a

(c:(a/a))2:65

(*613121)

180P6222P 62 2 2

\GammahD

4
6
84a

(c:(a/a))2:62

(*623220)

181P6422P 64 2 2

\GammahD

5
6
85a

(c:(a/a))2:64

(*623220)

182P6322P 63 2 2

\GammahD

6
6
86a

(c:(a/a))2:63

(*633021)

1836mm

*66

P6mmP 6 m m

\GammahC

1
6v
50s

(c:(a/a)):m6

(*{}6{}3{}2)

184P6ccP 6 c c

\GammahC

2
6v
44h

(c:(a/a)):\tildec6

(*{:}6{:}3{:}2)

185P63cmP 63 c m

\GammahC

3
6v
80a

(c:(a/a)):\tildec63

(*{}6{:}3{:}2)

186P63mcP 63 m c

\GammahC

4
6v
79a

(c:(a/a)):m63

(*{:}6{}3{}2)

187m2

*223

Pm2P m 2

\GammahD

1
3h
48s

(c:(a/a)):m3:m

[*{}3{}3{}3]

188Pc2P c 2

\GammahD

2
3h
43h

(c:(a/a)):\tildec3:m

[*{:}3{:}3{:}3]

189P2mP 2 m

\GammahD

3
3h
47s

(c:(a/a))m:3 ⋅ m

[30{*}{}3]

190P2cP 2 c

\GammahD

4
3h
42h

(c:(a/a))m:3 ⋅ \tildec

[30{*}{:}3]

1916/m 2/m 2/m

*226

P6/mmmP 6/m 2/m 2/m

\GammahD

1
6h
58s

(c:(a/a))m:6 ⋅ m

[*{}6{}3{}2]

192P6/mccP 6/m 2/c 2/c

\GammahD

2
6h
48h

(c:(a/a))m:6 ⋅ \tildec

[*{:}6{:}3{:}2]

193P63/mcmP 63/m 2/c 2/m

\GammahD

3
6h
87a

(c:(a/a))m:63 ⋅ \tildec

[*{}6{:}3{:}2]

194P63/mmcP 63/m 2/m 2/c

\GammahD

4
6h
88a

(c:(a/a))m:63 ⋅ m

[*{:}6{}3{}2]

List of cubic

Cubic crystal system!Number! Point group! Orbifold! Short name! Full name! Schoenflies! Fedorov! Shubnikov! Conway! Fibrifold (preserving

z

)! Fibrifold (preserving

x

,

y

,

z

)
19523

332

P23P 2 3
1
\Gamma
cT
59s

\left(a:a:a\right):2/3

2\circ

(*20202020){:}3

(*20202020){:}3

196F23F 2 3
fT
\Gamma
c

2

61s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):2/3

1\circ

(*20212021){:}3

(*20212021){:}3

197I23I 2 3
vT
\Gamma
c

3

60s

\left(\tfrac{a+b+c}{2}/a:a:a\right):2/3

4\circ\circ

(21{*}2020){:}3

(21{*}2020){:}3

198P213P 21 3
4
\Gamma
cT
89a

\left(a:a:a\right):21/3

1\circ/4

(2121\bar{ x }){:}3

(2121\bar{ x }){:}3

199I213I 21 3
vT
\Gamma
c

5

90a

\left(\tfrac{a+b+c}{2}/a:a:a\right):21/3

2\circ/4

(20{*}2121){:}3

(20{*}2121){:}3

2002/m

3{*}2

PmP 2/m

\GammacT

1
h
62s

\left(a:a:a\right)m/\tilde6

4-

[*{}2{}2{}2{}2]{:}3

[*{}2{}2{}2{}2]{:}3

201PnP 2/n

\GammacT

2
h
49h

\left(a:a:a\right)\widetilde{ab}/\tilde6

4\circ+

(2\bar{*}12020){:}3

(2\bar{*}12020){:}3

202FmF 2/m
3
\Gamma
h
64s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right)m/\tilde6

2-

[*{}2{}2{:}2{:}2]{:}3

[*{}2{}2{:}2{:}2]{:}3

203FdF 2/d
4
\Gamma
h
50h

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right)\tfrac{1}{2}\widetilde{ab}/\tilde6

2\circ+

(2\bar{*}2021){:}3

(2\bar{*}2021){:}3

204ImI 2/m
5
\Gamma
h
63s

\left(\tfrac{a+b+c}{2}/a:a:a\right)m/\tilde6

8-\circ

[21{*}{}2{}2]{:}3

[21{*}{}2{}2]{:}3

205PaP 21/a

\GammacT

6
h
91a

\left(a:a:a\right)\tildea/\tilde6

2-/4

(212\bar{*}{:}){:}3

(212\bar{*}{:}){:}3

206IaI 21/a
7
\Gamma
h
92a

\left(\tfrac{a+b+c}{2}/a:a:a\right)\tildea/\tilde6

4-/4

(*212{:}2{:}2){:}3

(*212{:}2{:}2){:}3

207432

432

P432P 4 3 2
1
\Gamma
cO
68s

\left(a:a:a\right):4/3

4\circ-

(*404020){:}3

(*20202020){:}6

208P4232P 42 3 2
2
\Gamma
cO
98a

\left(a:a:a\right):42//3

4+

(*424220){:}3

(*20202020){:}6

209F432F 4 3 2
fO
\Gamma
c

3

70s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):4/3

2\circ-

(*424021){:}3

(*20212021){:}6

210F4132F 41 3 2
fO
\Gamma
c

4

97a

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):41//3

2+

(*434120){:}3

(*20212021){:}6

211I432I 4 3 2
vO
\Gamma
c

5

69s

\left(\tfrac{a+b+c}{2}/a:a:a\right):4/3

8+\circ

(424021){:}3

(21{*}2020){:}6

212P4332P 43 3 2
6
\Gamma
cO
94a

\left(a:a:a\right):43//3

2+/4

(41{*}21){:}3

(2121\bar{ x }){:}6

213P4132P 41 3 2
7
\Gamma
cO
95a

\left(a:a:a\right):41//3

2+/4

(41{*}21){:}3

(2121\bar{ x }){:}6

214I4132I 41 3 2
vO
\Gamma
c

8

96a

\left(\tfrac{a+b+c}{2}/:a:a:a\right):41//3

4+/4

(*434120){:}3

(20{*}2121){:}6

2153m

*332

P3mP 3 m

\GammacT

1
d
65s

\left(a:a:a\right):\tilde4/3

2\circ{:}2

(*4{}420){:}3

(*20202020){:}6

216F3mF 3 m
2
\Gamma
d
67s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):\tilde4/3

1\circ{:}2

(*4{}421){:}3

(*20212021){:}6

217I3mI 3 m
3
\Gamma
d
66s

\left(\tfrac{a+b+c}{2}/a:a:a\right):\tilde4/3

4\circ{:}2

(*{}44{:}2){:}3

(21{*}2020){:}6

218P3nP 3 n

\GammacT

4
d
51h

\left(a:a:a\right):\tilde4//3

4\circ

(*4{:}420){:}3

(*20202020){:}6

219F3cF 3 c
5
\Gamma
d
52h

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):\tilde4//3

2\circ\circ

(*4{:}421){:}3

(*20212021){:}6

220I3dI 3 d
6
\Gamma
d
93a

\left(\tfrac{a+b+c}{2}/a:a:a\right):\tilde4//3

4\circ/4

(4\bar{*}21){:}3

(20{*}2121){:}6

2214/m 2/m

*432

PmmP 4/m 2/m

\GammacO

1
h
71s

\left(a:a:a\right):4/\tilde6m

4-{:}2

[*{}4{}4{}2]{:}3

[*{}2{}2{}2{}2]{:}6

222PnnP 4/n 2/n

\GammacO

2
h
53h

\left(a:a:a\right):4/\tilde6\widetilde{abc}

8\circ\circ

(*404{:}2){:}3

(2\bar{*}12020){:}6

223PmnP 42/m 2/n

\GammacO

3
h
102a

\left(a:a:a\right):42//\tilde6\widetilde{abc}

8\circ

[*{}4{:}4{}2]{:}3

[*{}2{}2{}2{}2]{:}6

224PnmP 42/n 2/m

\GammacO

4
h
103a

\left(a:a:a\right):42//\tilde6m

4+{:}2

(*424{}2){:}3

(2\bar{*}12020){:}6

225FmmF 4/m 2/m
5
\Gamma
h
73s

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):4/\tilde6m

2-{:}2

[*{}4{}4{:}2]{:}3

[*{}2{}2{:}2{:}2]{:}6

226FmcF 4/m 2/c
6
\Gamma
h
54h

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):4/\tilde6\tildec

4--

[*{}4{:}4{:}2]{:}3

[*{}2{}2{:}2{:}2]{:}6

227FdmF 41/d 2/m
7
\Gamma
h
100a

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):41//\tilde6m

2+{:}2

(*414{}2){:}3

(2\bar{*}2021){:}6

228FdcF 41/d 2/c
8
\Gamma
h
101a

\left(\tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right):41//\tilde6\tildec

4++

(*414{:}2){:}3

(2\bar{*}2021){:}6

229ImmI 4/m 2/m
9
\Gamma
h
72s

\left(\tfrac{a+b+c}{2}/a:a:a\right):4/\tilde6m

8\circ{:}2

[*{}4{}4{:}2]{:}3

[21{*}{}2{}2]{:}6

230IadI 41/a 2/d
10
\Gamma
h
99a

\left(\tfrac{a+b+c}{2}/a:a:a\right):41//\tilde6\tfrac{1}{2}\widetilde{abc}

8\circ/4

(*414{:}2){:}3

(*212{:}2{:}2){:}6

External links

Notes and References

  1. Book: Bradley . C. J. . Cracknell . A. P. . The mathematical theory of symmetry in solids: representation theory for point groups and space groups . Clarendon Press . Oxford New York . 2010 . 978-0-19-958258-7 . 859155300 . 127–134.