List of set identities and relations explained

This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

The binary operations of set union (

\cup

) and intersection (

\cap

) satisfy many identities. Several of these identities or "laws" have well established names.

Notation

Throughout this article, capital letters (such as

A,B,C,L,M,R,S,

and

X

) will denote sets. On the left hand side of an identity, typically,

L

will be the eft most set,

M

will be the iddle set, and

R

will be the ight most set.This is to facilitate applying identities to expressions that are complicated or use the same symbols as the identity.[1] For example, the identity (L \,\setminus\, M) \,\setminus\, R ~=~ (L \,\setminus\, R) \,\setminus\, (M \,\setminus\, R)may be read as:(\text \,\setminus\, \text) \,\setminus\, \text ~=~ (\text \,\setminus\, \text) \,\setminus\, (\text \,\setminus\, \text).

Elementary set operations

For sets

L

and

R,

define:\beginL \cup R &&~\stackrel~ \ \\L \cap R &&~\stackrel~ \ \\L \setminus R &&~\stackrel~ \ \\\endandL \triangle R ~\stackrel~ \where the

L\triangleR

is sometimes denoted by

L\ominusR

and equals:[2] [3] \beginL \;\triangle\; R ~&=~ (L ~\setminus~ &&R) ~\cup~ &&(R ~\setminus~ &&L) \\~&=~ (L ~\cup~ &&R) ~\setminus~ &&(L ~\cap~ &&R). \end

One set

L

is said to another set

R

if

L\capR\varnothing.

Sets that do not intersect are said to be .

The power set of

X

is the set of all subsets of

X

and will be denoted by\wp(X) ~\stackrel~ \.

Universe set and complement notation

The notation L^\complement ~\stackrel~ X \setminus L.may be used if

L

is a subset of some set

X

that is understood (say from context, or because it is clearly stated what the superset

X

is). It is emphasized that the definition of

L\complement

depends on context. For instance, had

L

been declared as a subset of

Y,

with the sets

Y

and

X

not necessarily related to each other in any way, then

L\complement

would likely mean

Y\setminusL

instead of

X\setminusL.

If it is needed then unless indicated otherwise, it should be assumed that

X

denotes the universe set, which means that all sets that are used in the formula are subsets of

X.

In particular, the complement of a set

L

will be denoted by

L\complement

where unless indicated otherwise, it should be assumed that

L\complement

denotes the complement of

L

in (the universe)

X.

One subset involved

Assume

L\subseteqX.

Identity

Definition:

e

is called a left identity element of a binary operator

\ast

if

e\astR=R

for all

R

and it is called a right identity element of

\ast

if

L\aste=L

for all

L.

A left identity element that is also a right identity element if called an identity element.

The empty set

\varnothing

is an identity element of binary union

\cup

and symmetric difference

\triangle,

and it is also a right identity element of set subtraction

\setminus:

\beginL \cap X &\;=\;&& L &\;=\;& X \cap L ~~~~\text L \subseteq X \\[1.4ex]L \cup \varnothing &\;=\;&& L &\;=\;& \varnothing \cup L \\[1.4ex]L \,\triangle \varnothing &\;=\;&& L &\;=\;& \varnothing \,\triangle L \\[1.4ex]L \setminus \varnothing &\;=\;&& L \\[1.4ex]\endbut

\varnothing

is not a left identity element of

\setminus

since\varnothing \setminus L = \varnothing so \varnothing \setminus L = L if and only if

L=\varnothing.

Idempotence

L\astL=L

and Nilpotence

L\astL=\varnothing

:

\beginL \cup L &\;=\;&& L && \quad \text \\[1.4ex]L \cap L &\;=\;&& L && \quad \text \\[1.4ex]L \,\triangle\, L &\;=\;&& \varnothing && \quad \text \\[1.4ex]L \setminus L &\;=\;&& \varnothing && \quad \text \\[1.4ex]\end

Domination/Absorbing element:

Definition:

z

is called a left absorbing element of a binary operator

\ast

if

z\astR=z

for all

R

and it is called a right absorbing element of

\ast

if

L\astz=z

for all

L.

A left absorbing element that is also a right absorbing element if called an absorbing element. Absorbing elements are also sometime called annihilating elements or zero elements.

A universe set is an absorbing element of binary union

\cup.

The empty set

\varnothing

is an absorbing element of binary intersection

\cap

and binary Cartesian product

x ,

and it is also a left absorbing element of set subtraction

\setminus:

\beginX \cup L &\;=\;&& X &\;=\;& L \cup X ~~~~\text L \subseteq X \\[1.4ex]\varnothing \cap L &\;=\;&& \varnothing &\;=\;& L \cap \varnothing \\[1.4ex]\varnothing \times L &\;=\;&& \varnothing &\;=\;& L \times \varnothing \\[1.4ex]\varnothing \setminus L &\;=\;&& \varnothing &\;\;& \\[1.4ex]\endbut

\varnothing

is not a right absorbing element of set subtraction sinceL \setminus \varnothing = L where L \setminus \varnothing = \varnothing if and only if L = \varnothing.

Double complement or involution law:

\beginX \setminus (X \setminus L)&= L&&\qquad\text\quad&&\left(L^\complement\right)^\complement = L&&\quad&&\text L \subseteq X \quad\text \\[1.4ex]\end

L \setminus \varnothing = L\begin\varnothing &= L &&\setminus L \\&= \varnothing &&\setminus L \\&= L &&\setminus X ~~~~\text L \subseteq X \\\end

L^\complement = X \setminus L \quad \text

\beginL \,\cup (X \setminus L)&= X&&\qquad\text\quad&&L \cup L^\complement = X&&\quad&&\text L \subseteq X\\[1.4ex]

L \,\triangle (X \setminus L)&= X&&\qquad\text\quad&&L \,\triangle L^\complement = X&&\quad&&\text L \subseteq X\\[1.4ex]

L \,\cap (X \setminus L)&= \varnothing&&\qquad\text\quad&&L \cap L^\complement = \varnothing&&\quad&&\\[1.4ex]\end

\beginX \setminus \varnothing&= X&&\qquad\text\quad&&\varnothing^\complement = X&&\quad&&\text\\[1.4ex]

X \setminus X&= \varnothing&&\qquad\text\quad&&X^\complement = \varnothing&&\quad&&\text\\[1.4ex]\end

Two sets involved

In the left hand sides of the following identities,

L

is the eft most set and

R

is the ight most set. Assume both

LandR

are subsets of some universe set

X.

Formulas for binary set operations ⋂, ⋃, \, and ∆

In the left hand sides of the following identities,

L

is the eft most set and

R

is the ight most set. Whenever necessary, both

LandR

should be assumed to be subsets of some universe set

X,

so that

L\complement:=X\setminusLandR\complement:=X\setminusR.

\beginL \cap R&= L &&\,\,\setminus\, &&(L &&\,\,\setminus &&R) \\&= R &&\,\,\setminus\, &&(R &&\,\,\setminus &&L) \\&= L &&\,\,\setminus\, &&(L &&\,\triangle\, &&R) \\&= L &&\,\triangle\, &&(L &&\,\,\setminus &&R) \\\end

\beginL \cup R&= (&&L \,\triangle\, R) &&\,\,\cup && &&L && && \\&= (&&L \,\triangle\, R) &&\,\triangle\, &&(&&L &&\cap\, &&R) \\&= (&&R \,\setminus\, L) &&\,\,\cup && &&L && && ~~~~~\text \\\end

\beginL \,\triangle\, R&= &&R \,\triangle\, L && && && && \\&= (&&L \,\cup\, R) &&\,\setminus\, &&(&&L \,\,\cap\, R) && \\&= (&&L \,\setminus\, R) &&\cup\, &&(&&R \,\,\setminus\, L) && ~~~~~\text \\&= (&&L \,\triangle\, M) &&\,\triangle\, &&(&&M \,\triangle\, R) && ~~~~~\text M \text \\&= (&&L^\complement) &&\,\triangle\, &&(&&R^\complement) && \\\end

\beginL \setminus R&= &&L &&\,\,\setminus &&(L &&\,\,\cap &&R) \\&= &&L &&\,\,\cap &&(L &&\,\triangle\, &&R) \\&= &&L &&\,\triangle\, &&(L &&\,\,\cap &&R) \\&= &&R &&\,\triangle\, &&(L &&\,\,\cup &&R) \\\end

De Morgan's laws

De Morgan's laws state that for

L,R\subseteqX:

\beginX \setminus (L \cap R)&= (X \setminus L) \cup (X \setminus R)&&\qquad\text\quad&&(L \cap R)^\complement = L^\complement \cup R^\complement&&\quad&&\text\\[1.4ex]

X \setminus (L \cup R)&= (X \setminus L) \cap (X \setminus R)&&\qquad\text\quad&&(L \cup R)^\complement = L^\complement \cap R^\complement&&\quad&&\text\\[1.4ex]\end

Commutativity

Unions, intersection, and symmetric difference are commutative operations:

\beginL \cup R &\;=\;&& R \cup L && \quad \text \\[1.4ex]L \cap R &\;=\;&& R \cap L && \quad \text \\[1.4ex]L \,\triangle R &\;=\;&& R \,\triangle L && \quad \text \\[1.4ex]\end

Set subtraction is not commutative. However, the commutativity of set subtraction can be characterized: from

(L\setminusR)\cap(R\setminusL)=\varnothing

it follows that:L \,\setminus\, R = R \,\setminus\, L \quad \text \quad L = R. Said differently, if distinct symbols always represented distinct sets, then the true formulas of the form

\setminus=\setminus

that could be written would be those involving a single symbol; that is, those of the form:

S\setminusS=S\setminusS.

But such formulas are necessarily true for binary operation

\ast

(because

x\astx=x\astx

must hold by definition of equality), and so in this sense, set subtraction is as diametrically opposite to being commutative as is possible for a binary operation. Set subtraction is also neither left alternative nor right alternative; instead,

(L\setminusL)\setminusR=L\setminus(L\setminusR)

if and only if

L\capR=\varnothing

if and only if

(R\setminusL)\setminusL=R\setminus(L\setminusL).

Set subtraction is quasi-commutative and satisfies the Jordan identity.

Other identities involving two sets

Absorption laws:

\beginL \cup (L \cap R) &\;=\;&& L && \quad \text \\[1.4ex]L \cap (L \cup R) &\;=\;&& L && \quad \text \\[1.4ex]\end

Other properties

\beginL \setminus R&= L \cap (X \setminus R)&&\qquad\text\quad&&L \setminus R = L \cap R^\complement&&\quad&&\text L, R \subseteq X\\[1.4ex]

X \setminus (L \setminus R)&= (X \setminus L) \cup R&&\qquad\text\quad&&(L \setminus R)^\complement = L^\complement \cup R&&\quad&&\text R \subseteq X\\[1.4ex]

L \setminus R&= (X \setminus R) \setminus (X \setminus L)&&\qquad\text\quad&&L \setminus R = R^\complement \setminus L^\complement&&\quad&&\text L, R \subseteq X\\[1.4ex]\end

Intervals:

(a, b) \cap (c, d) = (\max\, \min\)[a, b) \cap [c, d) = [\max\{a,c\}, \min\{b,d\})</math> ===Subsets ⊆ and supersets ⊇=== The following statements are equivalent for any <math>L, R \subseteq X:</math>{{sfn|Monk|1969|pp=24-54}} <ol> <li><math>L \subseteq R</math> * Definition of {{em|[[subset]]}}: if

l\inL

then

l\inR

  • L\capR=L

  • L\cupR=R

  • L\triangleR=R\setminusL

  • L\triangleR\subseteqR\setminusL

  • L\setminusR=\varnothing

  • L

    and

    X\setminusR

    are disjoint (that is,

    L\cap(X\setminusR)=\varnothing

    )
  • X\setminusR\subseteqX\setminusL   

    (that is,

    R\complement\subseteqL\complement

    )
  • The following statements are equivalent for any

    L,R\subseteqX:

    1. L\not\subseteqR

    2. There exists some

      l\inL\setminusR.

    Set equality

    See also: Extensionality.

    The following statements are equivalent:

    1. L=R

    2. L\triangleR=\varnothing

    3. L\setminusR=R\setminusL

    Empty set

    A set

    L

    is empty if the sentence

    \forallx(x\not\inL)

    is true, where the notation

    x\not\inL

    is shorthand for

    lnot(x\inL).

    If

    L

    is any set then the following are equivalent:
    1. L

      is not empty, meaning that the sentence

      lnot[\forallx(x\not\inL)]

      is true (literally, the logical negation of "

      L

      is empty" holds true).
    2. (In classical mathematics)

      L

      is inhabited, meaning:

      \existsx(x\inL)

      • In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set

      L

      that is not empty (where by definition, "

      L

      is empty" means that the statement

      \forallx(x\not\inL)

      is true) might not have an inhabitant (which is an

      x

      such that

      x\inL

      ).
    3. L\not\subseteqR

      for some set

      R

    If

    L

    is any set then the following are equivalent:
    1. L

      is empty (

      L=\varnothing

      ), meaning:

      \forallx(x\not\inL)

    2. L\cupR\subseteqR

      for every set

      R

    3. L\subseteqR

      for every set

      R

    4. L\subseteqR\setminusL

      for some/every set

      R

    5. \varnothing/L=L

    Given any

    x,

    the following are equivalent:

    1. x \not\in L \setminus R
    2. x \in L \cap R \; \text \; x \not\in L.
    3. x \in R \; \text \; x \not\in L.

    Moreover,(L \setminus R) \cap R = \varnothing \qquad \text.

    Meets, Joins, and lattice properties

    \subseteq,

    which is a binary operation, has the following three properties:

    The following proposition says that for any set

    S,

    the power set of

    S,

    ordered by inclusion, is a bounded lattice, and hence together with the distributive and complement laws above, show that it is a Boolean algebra.

    Existence of a least element and a greatest element: \varnothing \subseteq L \subseteq X

    Joins/supremums exist: L \subseteq L \cup R

    The union

    L\cupR

    is the join/supremum of

    L

    and

    R

    with respect to

    \subseteq

    because:
    1. L\subseteqL\cupR

      and

      R\subseteqL\cupR,

      and
    2. if

      Z

      is a set such that

      L\subseteqZ

      and

      R\subseteqZ

      then

      L\cupR\subseteqZ.

    The intersection

    L\capR

    is the join/supremum of

    L

    and

    R

    with respect to

    \supseteq.

    Meets/infimums exist: L \cap R \subseteq L

    The intersection

    L\capR

    is the meet/infimum of

    L

    and

    R

    with respect to

    \subseteq

    because:
    1. if

      L\capR\subseteqL

      and

      L\capR\subseteqR,

      and
    2. if

      Z

      is a set such that

      Z\subseteqL

      and

      Z\subseteqR

      then

      Z\subseteqL\capR.

    The union

    L\cupR

    is the meet/infimum of

    L

    and

    R

    with respect to

    \supseteq.

    Other inclusion properties:

    L \setminus R \subseteq L(L \setminus R) \cap L = L \setminus R

    Three sets involved

    In the left hand sides of the following identities,

    L

    is the eft most set,

    M

    is the iddle set, and

    R

    is the ight most set.

    Precedence rules

    There is no universal agreement on the order of precedence of the basic set operators.Nevertheless, many authors use precedence rules for set operators, although these rules vary with the author.

    One common convention is to associate intersection

    L\capR=\{x:(x\inL)\land(x\inR)\}

    with logical conjunction (and)

    L\landR

    and associate union

    L\cupR=\{x:(x\inL)\lor(x\inR)\}

    with logical disjunction (or)

    L\lorR,

    and then transfer the precedence of these logical operators (where

    \land

    has precedence over

    \lor

    ) to these set operators, thereby giving

    \cap

    precedence over

    \cup.

    So for example,

    L\cupM\capR

    would mean

    L\cup(M\capR)

    since it would be associated with the logical statement

    L\lorM\landR~=~L\lor(M\landR)

    and similarly,

    L\cupM\capR\cupZ

    would mean

    L\cup(M\capR)\cupZ

    since it would be associated with

    L\lorM\landR\lorZ~=~L\lor(M\landR)\lorZ.

    Sometimes, set complement (subtraction)

    \setminus

    is also associated with logical complement (not)

    lnot,

    in which case it will have the highest precedence. More specifically,

    L\setminusR=\{x:(x\inL)\landlnot(x\inR)\}

    is rewritten

    L\landlnotR

    so that for example,

    L\cupM\setminusR

    would mean

    L\cup(M\setminusR)

    since it would be rewritten as the logical statement

    L\lorM\landlnotR

    which is equal to

    L\lor(M\landlnotR).

    For another example, because

    L\landlnotM\landR

    means

    L\land(lnotM)\landR,

    which is equal to both

    (L\land(lnotM))\landR

    and

    L\land((lnotM)\landR)~=~L\land(R\land(lnotM))

    (where

    (lnotM)\landR

    was rewritten as

    R\land(lnotM)

    ), the formula

    L\setminusM\capR

    would refer to the set

    (L\setminusM)\capR=L\cap(R\setminusM);

    moreover, since

    L\land(lnotM)\landR=(L\landR)\landlnotM,

    this set is also equal to

    (L\capR)\setminusM

    (other set identities can similarly be deduced from propositional calculus identities in this way).However, because set subtraction is not associative

    (L\setminusM)\setminusRL\setminus(M\setminusR),

    a formula such as

    L\setminusM\setminusR

    would be ambiguous; for this reason, among others, set subtraction is often not assigned any precedence at all.

    L\triangleR=\{x:(x\inL)(x\inR)\}

    is sometimes associated with exclusive or (xor)

    LR

    (also sometimes denoted by

    \veebar

    ), in which case if the order of precedence from highest to lowest is

    lnot,,\land,\lor

    then the order of precedence (from highest to lowest) for the set operators would be

    \setminus,\triangle,\cap,\cup.

    There is no universal agreement on the precedence of exclusive disjunction

    with respect to the other logical connectives, which is why symmetric difference

    \triangle

    is not often assigned a precedence.

    Associativity

    \ast

    is called associative if

    (L\astM)\astR=L\ast(M\astR)

    always holds.

    The following set operators are associative:

    \begin(L \cup M) \cup R &\;=\;\;&& L \cup (M \cup R) \\[1.4ex](L \cap M) \cap R &\;=\;\;&& L \cap (M \cap R) \\[1.4ex](L \,\triangle M) \,\triangle R &\;=\;\;&& L \,\triangle (M \,\triangle R) \\[1.4ex]\end

    For set subtraction, instead of associativity, only the following is always guaranteed:(L \,\setminus\, M) \,\setminus\, R \;~~~~\; L \,\setminus\, (M \,\setminus\, R)where equality holds if and only if

    L\capR=\varnothing

    (this condition does not depend on

    M

    ). Thus \; (L \setminus M) \setminus R = L \setminus (M \setminus R) \; if and only if

    (R\setminusM)\setminusL=R\setminus(M\setminusL),

    where the only difference between the left and right hand side set equalities is that the locations of

    LandR

    have been swapped.

    Distributivity

    Definition: If

    \astand\bullet

    are binary operators then if L \,\ast\, (M \,\bullet\, R) ~=~ (L \,\ast\, M) \,\bullet\, (L \,\ast\,R) \qquad\qquad \text L, M, Rwhile if (L \,\bullet\, M) \,\ast\, R ~=~ (L \,\ast\, R) \,\bullet\, (M \,\ast\,R) \qquad\qquad \text L, M, R. The operator if it both left distributes and right distributes over

    \bullet.

    In the definitions above, to transform one side to the other, the innermost operator (the operator inside the parentheses) becomes the outermost operator and the outermost operator becomes the innermost operator.

    Right distributivity

    \begin(L \,\cap\, M) \,\cup\, R ~&~~=~~&& (L \,\cup\, R) \,&&\cap\, &&(M \,\cup\, R) \qquad &&\text \,\cup\, \text \,\cap\, \text \\[1.4ex](L \,\cup\, M) \,\cup\, R ~&~~=~~&& (L \,\cup\, R) \,&&\cup\, &&(M \,\cup\, R) \qquad &&\text \,\cup\, \text \,\cup\, \text \\[1.4ex](L \,\cup\, M) \,\cap\, R ~&~~=~~&& (L \,\cap\, R) \,&&\cup\, &&(M \,\cap\, R) \qquad &&\text \,\cap\, \text \,\cup\, \text \\[1.4ex](L \,\cap\, M) \,\cap\, R ~&~~=~~&& (L \,\cap\, R) \,&&\cap\, &&(M \,\cap\, R) \qquad &&\text \,\cap\, \text \,\cap\, \text \\[1.4ex](L \,\triangle\, M) \,\cap\, R ~&~~=~~&& (L \,\cap\, R) \,&&\triangle\, &&(M \,\cap\, R) \qquad &&\text \,\cap\, \text \,\triangle\, \text \\[1.4ex](L \,\cap\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\cap\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\cap\, \text \\[1.4ex](L \,\cup\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\cup\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\cup\, \text \\[1.4ex](L \,\setminus\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\setminus\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\setminus\, \text \\[1.4ex](L \,\triangle\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\triangle\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\triangle\, \text \\[1.4ex](L \,\cup\, M) \,\setminus\, R ~&~~=~~&& (L \,\setminus\, R) \,&&\cup\, &&(M \,\setminus\, R) \qquad &&\text \,\setminus\, \text \,\cup\, \text \\[1.4ex](L \,\cap\, M) \,\setminus\, R ~&~~=~~&& (L \,\setminus\, R) \,&&\cap\, &&(M \,\setminus\, R) \qquad &&\text \,\setminus\, \text \,\cap\, \text \\[1.4ex](L \,\triangle\, M) \,\setminus\, R ~&~~=~~&& (L \,\setminus\, R) &&\,\triangle\, &&(M \,\setminus\, R) \qquad &&\text \,\setminus\, \text \,\triangle\, \text \\[1.4ex](L \,\setminus\, M) \,\setminus\, R ~&~~=~~&& (L \,\setminus\, R) &&\,\setminus\, &&(M \,\setminus\, R) \qquad &&\text \,\setminus\, \text \,\setminus\, \text \\[1.4ex]~&~~=~~&&~~\;~~\;~~\;~ L &&\,\setminus\, &&(M \cup R) \\[1.4ex]\end

    Left distributivity

    \beginL \cup (M \cap R) &\;=\;\;&& (L \cup M) \cap (L \cup R) \qquad&&\text \,\cup\, \text \,\cap\, \text \\[1.4ex]L \cup (M \cup R) &\;=\;\;&& (L \cup M) \cup (L \cup R) &&\text \,\cup\, \text \,\cup\, \text \\[1.4ex]L \cap (M \cup R) &\;=\;\;&& (L \cap M) \cup (L \cap R) &&\text \,\cap\, \text \,\cup\, \text \\[1.4ex]L \cap (M \cap R) &\;=\;\;&& (L \cap M) \cap (L \cap R) &&\text \,\cap\, \text \,\cap\, \text \\[1.4ex]L \cap (M \,\triangle\, R) &\;=\;\;&& (L \cap M) \,\triangle\, (L \cap R) &&\text \,\cap\, \text \,\triangle\, \text \\[1.4ex]L \times (M \cap R) &\;=\;\;&& (L \times M) \cap (L \times R) &&\text \,\times\, \text \,\cap\, \text \\[1.4ex]L \times (M \cup R) &\;=\;\;&& (L \times M) \cup (L \times R) &&\text \,\times\, \text \,\cup\, \text \\[1.4ex]L \times (M \,\setminus R) &\;=\;\;&& (L \times M) \,\setminus (L \times R) &&\text \,\times\, \text \,\setminus\, \text \\[1.4ex]L \times (M \,\triangle R) &\;=\;\;&& (L \times M) \,\triangle (L \times R) &&\text \,\times\, \text \,\triangle\, \text \\[1.4ex]\end

    Distributivity and symmetric difference ∆

    Intersection distributes over symmetric difference:\beginL \,\cap\, (M \,\triangle\, R) ~&~~=~~&& (L \,\cap\, M) \,\triangle\, (L \,\cap\, R) ~&&~ \\[1.4ex]\end\begin(L \,\triangle\, M) \,\cap\, R~&~~=~~&& (L \,\cap\, R) \,\triangle\, (M \,\cap\, R) ~&&~ \\[1.4ex]\end

    Union does not distribute over symmetric difference because only the following is guaranteed in general:\beginL \cup (M \,\triangle\, R) ~~~~ \color (L \cup M) \,\triangle\, (L \cup R) ~&~=~&& (M \,\triangle\, R) \,\setminus\, L &~=~&& (M \,\setminus\, L) \,\triangle\, (R \,\setminus\, L) \\[1.4ex]\end

    Symmetric difference does not distribute over itself:L \,\triangle\, (M \,\triangle\, R) ~~~~ \color (L \,\triangle\, M) \,\triangle\, (L \,\triangle\, R) ~=~ M \,\triangle\, Rand in general, for any sets

    LandA

    (where

    A

    represents

    M\triangleR

    ),

    L\triangleA

    might not be a subset, nor a superset, of

    L

    (and the same is true for

    A

    ).

    Distributivity and set subtraction \

    Failure of set subtraction to left distribute:

    Set subtraction is distributive over itself. However, set subtraction is left distributive over itself because only the following is guaranteed in general:\beginL \,\setminus\, (M \,\setminus\, R) &~~~~&& \color (L \,\setminus\, M) \,\setminus\, (L \,\setminus\, R) ~~=~~ L \cap R \,\setminus\, M \\[1.4ex]\endwhere equality holds if and only if

    L\setminusM=L\capR,

    which happens if and only if

    L\capM\capR=\varnothingandL\setminusM\subseteqR.

    For symmetric difference, the sets

    L\setminus(M\triangleR)

    and

    (L\setminusM)\triangle(L\setminusR)=L\cap(M\triangleR)

    are always disjoint. So these two sets are equal if and only if they are both equal to

    \varnothing.

    Moreover,

    L\setminus(M\triangleR)=\varnothing

    if and only if

    L\capM\capR=\varnothingandL\subseteqM\cupR.

    To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related:\begin(L \,\setminus\, M) \,\cap\, (L \,\setminus\, R) ~~=~~ L \,\setminus\, (M \,\cup\, R) ~&~~~~&& \color L \,\setminus\, (M \,\cap\, R) ~~=~~ (L \,\setminus\, M) \,\cup\, (L \,\setminus\, R) \\[1.4ex]\endalways holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment

    {\color{red}{\subseteq}}

    might be strict). Equality holds if and only if

    L\setminus(M\capR)\subseteqL\setminus(M\cupR),

    which happens if and only if

    L\capM=L\capR.

    This observation about De Morgan's laws shows that

    \setminus

    is left distributive over

    \cup

    or

    \cap

    because only the following are guaranteed in general:\beginL \,\setminus\, (M \,\cup\, R) ~&~~~~&& \color (L \,\setminus\, M) \,\cup\, (L \,\setminus\, R) ~~=~~ L \,\setminus\, (M \,\cap\, R) \\[1.4ex]\end\beginL \,\setminus\, (M \,\cap\, R) ~&~~~~&& \color (L \,\setminus\, M) \,\cap\, (L \,\setminus\, R) ~~=~~ L \,\setminus\, (M \,\cup\, R) \\[1.4ex]\endwhere equality holds for one (or equivalently, for both) of the above two inclusion formulas if and only if

    L\capM=L\capR.

    The following statements are equivalent:

    1. L\capM=L\capR

    2. L\setminusM=L\setminusR

    3. L\setminus(M\capR)=(L\setminusM)\cap(L\setminusR);

      that is,

      \setminus

      left distributes over

      \cap

      for these three particular sets
    4. L\setminus(M\cupR)=(L\setminusM)\cup(L\setminusR);

      that is,

      \setminus

      left distributes over

      \cup

      for these three particular sets
    5. L\setminus(M\capR)=L\setminus(M\cupR)

    6. L\cap(M\cupR)=L\capM\capR

    7. L\cap(M\cupR)~\subseteq~M\capR

    8. L\capR~\subseteq~M

      and

      L\capM~\subseteq~R

    9. L\setminus(M\setminusR)=L\setminus(R\setminusM)

    10. L\setminus(M\setminusR)=L\setminus(R\setminusM)=L

    Quasi-commutativity

    (L \setminus M) \setminus R ~=~ (L \setminus R) \setminus M \qquad \textalways holds but in general, L \setminus (M \setminus R) ~~~~ L \setminus (R \setminus M).However,

    L\setminus(M\setminusR)~\subseteq~L\setminus(R\setminusM)

    if and only if

    L\capR~\subseteq~M

    if and only if

    L\setminus(R\setminusM)~=~L.

    Set subtraction complexity: To manage the many identities involving set subtraction, this section is divided based on where the set subtraction operation and parentheses are located on the left hand side of the identity. The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike

    \cup,\cap,

    and

    \triangle,

    set subtraction is neither associative nor commutative and it also is not left distributive over

    \cup,\cap,\triangle,

    or even over itself.

    Two set subtractions

    Set subtraction is associative in general: (L \,\setminus\, M) \,\setminus\, R \;~~~~\; L \,\setminus\, (M \,\setminus\, R)since only the following is always guaranteed:(L \,\setminus\, M) \,\setminus\, R \;~~~~\; L \,\setminus\, (M \,\setminus\, R).

    (L\M)\R

    \begin(L \setminus M) \setminus R &= &&L \setminus (M \cup R) \\[0.6ex]&= (&&L \setminus R) \setminus M \\[0.6ex]&= (&&L \setminus M) \cap (L \setminus R) \\[0.6ex]&= (&&L \setminus R) \setminus M \\[0.6ex]&= (&&L \,\setminus\, R) \,\setminus\, (M \,\setminus\, R) \\[1.4ex]\end

    L\(M\R)

    \beginL \setminus (M \setminus R) &= (L \setminus M) \cup (L \cap R) \\[1.4ex]\end

    L\subseteqMthenL\setminus(M\setminusR)=L\capR

    R\subseteqL.

    One set subtraction

    (L\M) ⁎ R

    Set subtraction on the left, and parentheses on the

    \begin\left(L \setminus M\right) \cup R &= (L \cup R) \setminus (M \setminus R) \\&= (L \setminus (M \cup R)) \cup R ~~~~~ \text \\\end

    \begin{alignat}{4} (L\setminusM)\capR&=(&&L\capR)\setminus(M\capR)~~~(Distributivelawof\capover\setminus)\\ &=(&&L\capR)\setminusM\\ &=&&L\cap(R\setminusM)\\ \end{alignat}

    \begin(L \,\setminus\, M) \,\cap\, (L \,\setminus\, R) ~~=~~ L \,\setminus\, (M \,\cup\, R) ~&~~~~&& \color L \,\setminus\, (M \,\cap\, R) ~~=~~ (L \,\setminus\, M) \,\cup\, (L \,\setminus\, R) \\[1.4ex]\end \begin(L \setminus M) ~\triangle~ R &= (L \setminus (M \cup R)) \cup (R \setminus L) \cup (L \cap M \cap R) ~~~\text \\\end

    (L \,\setminus M) \times R = (L \times R) \,\setminus (M \times R) ~~~~~\text

    L\(M ⁎ R)

    Set subtraction on the left, and parentheses on the

    \beginL \setminus (M \cup R) &= (L \setminus M) &&\,\cap\, (&&L \setminus R) ~~~~\text \\&= (L \setminus M) &&\,\,\setminus &&R \\&= (L \setminus R) &&\,\,\setminus &&M \\\end

    \beginL \setminus (M \cap R) &= (L \setminus M) \cup (L \setminus R) ~~~~\text \\\endwhere the above two sets that are the subjects of De Morgan's laws always satisfy

    L\setminus(M\cupR)~~{\color{red}{\subseteq}}~~\color{black}{}L\setminus(M\capR).

    \beginL \setminus (M ~\triangle~ R) &= (L \setminus (M \cup R)) \cup (L \cap M \cap R) ~~~\text \\\end

    (L ⁎ M)\R

    Set subtraction on the right, and parentheses on the

    \begin(L \cup M) \setminus R &= (L \setminus R) \cup (M \setminus R) \\\end

    \begin(L \cap M) \setminus R &= (&&L \setminus R) &&\cap (M \setminus R) \\&= &&L &&\cap (M \setminus R) \\&= &&M &&\cap (L \setminus R) \\\end

    \begin(L \,\triangle\, M) \setminus R &= (L \setminus R) ~&&\triangle~ (M \setminus R) \\&= (L \cup R) ~&&\triangle~ (M \cup R) \\\end

    L ⁎ (M\R)

    Set subtraction on the right, and parentheses on the

    \beginL \cup (M \setminus R)&= && &&L &&\cup\; &&(M \setminus (R \cup L)) &&~~~\text \\&= [&&(&&L \setminus M) &&\cup\; &&(R \cap L)] \cup (M \setminus R) &&~~~\text \\&= &&(&&L \setminus (M \cup R)) \;&&\;\cup &&(R \cap L)\,\, \cup (M \setminus R) &&~~~\text \\\end

    \begin{alignat}{4} L\cap(M\setminusR) &=(&&L\capM)&&\setminus(L\capR)~~~(Distributivelawof\capover\setminus)\\ &=(&&L\capM)&&\setminusR\\ &=&&M&&\cap(L\setminusR)\\ &=(&&L\setminusR)&&\cap(M\setminusR)\\ \end{alignat}

    L \times (M \,\setminus R) = (L \times M) \,\setminus (L \times R) ~~~~~\text

    Three operations on three sets

    (L • M) ⁎ (M • R)

    Operations of the form

    (L\bulletM)\ast(M\bulletR)

    :

    \begin(L \cup M) &\,\cup\,&& (&&M \cup R) && &&\;=\;\;&& L \cup M \cup R \\[1.4ex](L \cup M) &\,\cap\,&& (&&M \cup R) && &&\;=\;\;&& M \cup (L \cap R) \\[1.4ex](L \cup M) &\,\setminus\,&& (&&M \cup R) && &&\;=\;\;&& L \,\setminus\, (M \cup R) \\[1.4ex](L \cup M) &\,\triangle\,&& (&&M \cup R) && &&\;=\;\;&& (L \,\setminus\, (M \cup R)) \,\cup\, (R \,\setminus\, (L \cup M)) \\[1.4ex]&\,&&\,&&\,&& &&\;=\;\;&& (L \,\triangle\, R) \,\setminus\, M \\[1.4ex](L \cap M) &\,\cup\,&& (&&M \cap R) && &&\;=\;\;&& M \cap (L \cup R) \\[1.4ex](L \cap M) &\,\cap\,&& (&&M \cap R) && &&\;=\;\;&& L \cap M \cap R \\[1.4ex](L \cap M) &\,\setminus\,&& (&&M \cap R) && &&\;=\;\;&& (L \cap M) \,\setminus\, R \\[1.4ex](L \cap M) &\,\triangle\,&& (&&M \cap R) && &&\;=\;\;&& [(L \,\cap M) \cup (M \,\cap R)] \,\setminus\, (L \,\cap M \,\cap R) \\[1.4ex](L \,\setminus M) &\,\cup\,&& (&&M \,\setminus R) && &&\;=\;\;&& (L \,\cup M) \,\setminus (M \,\cap\, R) \\[1.4ex](L \,\setminus M) &\,\cap\,&& (&&M \,\setminus R) && &&\;=\;\;&& \varnothing \\[1.4ex](L \,\setminus M) &\,\setminus\,&& (&&M \,\setminus R) && &&\;=\;\;&& L \,\setminus M \\[1.4ex](L \,\setminus M) &\,\triangle\,&& (&&M \,\setminus R) && &&\;=\;\;&& (L \,\setminus M) \cup (M \,\setminus R) \\[1.4ex]&\,&&\,&&\,&& &&\;=\;\;&& (L \,\cup M) \setminus (M \,\cap R) \\[1.4ex](L \,\triangle\, M) &\,\cup\,&& (&&M \,\triangle\, R) && &&\;=\;\;&& (L \,\cup\, M \,\cup\, R) \,\setminus\, (L \,\cap\, M \,\cap\, R) \\[1.4ex](L \,\triangle\, M) &\,\cap\,&& (&&M \,\triangle\, R) && &&\;=\;\;&& ((L \,\cap\, R) \,\setminus\, M) \,\cup\, (M \,\setminus\, (L \,\cup\, R)) \\[1.4ex](L \,\triangle\, M) &\,\setminus\,&& (&&M \,\triangle\, R) && &&\;=\;\;&& (L \,\setminus\, (M \,\cup\, R)) \,\cup\, ((M \,\cap\, R) \,\setminus\, L) \\[1.4ex](L \,\triangle\, M) &\,\triangle\,&& (&&M \,\triangle\, R) && &&\;=\;\;&& L \,\triangle\, R \\[1.7ex]\end

    (L • M) ⁎ (R\M)

    Operations of the form

    (L\bulletM)\ast(R\setminusM)

    :

    \begin(L \cup M) &\,\cup\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& L \cup M \cup R \\[1.4ex](L \cup M) &\,\cap\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& (L \cap R) \,\setminus\, M \\[1.4ex](L \cup M) &\,\setminus\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& M \cup (L \,\setminus\, R) \\[1.4ex](L \cup M) &\,\triangle\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& M \cup (L \,\triangle\, R) \\[1.4ex](L \cap M) &\,\cup\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& [L \cap (M \cup R)] \cup [R \,\setminus\, (L \cup M)] \qquad \text \\[1.4ex]&\,&&\,&&\,&& &&\;=\;\;&& (L \cap M) \,\triangle\, (R \,\setminus\, M) \\[1.4ex](L \cap M) &\,\cap\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& \varnothing \\[1.4ex](L \cap M) &\,\setminus\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& L \cap M \\[1.4ex](L \cap M) &\,\triangle\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& (L \cap M) \cup (R \,\setminus\, M) \qquad \text \\[1.4ex](L \,\setminus\, M) &\,\cup\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& L \cup R \,\setminus\, M \\[1.4ex](L \,\setminus\, M) &\,\cap\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& (L \cap R) \,\setminus\, M \\[1.4ex](L \,\setminus\, M) &\,\setminus\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& L \,\setminus\, (M \cup R) \\[1.4ex](L \,\setminus\, M) &\,\triangle\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& (L \,\triangle\, R) \,\setminus\, M \\[1.4ex](L \,\triangle\, M) &\,\cup\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& (L \cup M \cup R) \,\setminus\, (L \cap M) \\[1.4ex](L \,\triangle\, M) &\,\cap\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& (L \cap R) \,\setminus\, M \\[1.4ex](L \,\triangle\, M) &\,\setminus\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& [L \,\setminus\, (M \cup R)] \cup (M \,\setminus\, L) \qquad \text \\[1.4ex]&\,&&\,&&\,&& &&\;=\;\;&& (L \,\triangle\, M) \setminus (L \,\cap R) \\[1.4ex](L \,\triangle\, M) &\,\triangle\,&& (&&R \,\setminus\, M) && &&\;=\;\;&& L \,\triangle\, (M \cup R) \\[1.7ex]\end

    (L\M) ⁎ (L\R)

    Operations of the form

    (L\setminusM)\ast(L\setminusR)

    :

    \begin(L \,\setminus M) &\,\cup\,&& (&&L \,\setminus R) &&\;=\;&& L \,\setminus\, (M \,\cap\, R) \\[1.4ex](L \,\setminus M) &\,\cap\,&& (&&L \,\setminus R) &&\;=\;&& L \,\setminus\, (M \,\cup\, R) \\[1.4ex](L \,\setminus M) &\,\setminus\,&& (&&L \,\setminus R) &&\;=\;&& (L \,\cap\, R) \,\setminus\, M \\[1.4ex](L \,\setminus M) &\,\triangle\,&& (&&L \,\setminus R) &&\;=\;&& L \,\cap\, (M \,\triangle\, R) \\[1.4ex]&\,&&\,&&\, &&\;=\;&& (L \cap M) \,\triangle\, (L \cap R) \\[1.4ex]\end

    Other simplifications

    Other properties:

    L \cap M = R \;\text\; L \cap R = M \qquad \text \qquad M = R \subseteq L.

    Symmetric difference ∆ of finitely many sets

    Given finitely many sets

    L1,\ldots,Ln,

    something belongs to their symmetric difference if and only if it belongs to an odd number of these sets. Explicitly, for any

    x,

    x\inL1\triangle\triangleLn

    if and only if the cardinality

    \left|\left\{i:x\inLi\right\}\right|

    is odd. (Recall that symmetric difference is associative so parentheses are not needed for the set

    L1\triangle\triangleLn

    ).

    Consequently, the symmetric difference of three sets satisfies:\beginL \,\triangle\, M \,\triangle\, R &= (L \cap M \cap R) \cup \ ~~~~~~ \text \\&= [L \cap M \cap R] \cup [L \setminus (M \cup R)] \cup [M \setminus (L \cup R)] \cup [R \setminus (L \cup M)] ~~~~~~~~~ \text \\\end

    Cartesian products ⨯ of finitely many sets

    Binary ⨯ distributes over ⋃ and ⋂ and \ and ∆

    The binary Cartesian product ⨯ distributes over unions, intersections, set subtraction, and symmetric difference:

    \begin(L \,\cap\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\cap\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\cap\, \text \\[1.4ex](L \,\cup\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\cup\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\cup\, \text \\[1.4ex](L \,\setminus\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\setminus\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\setminus\, \text \\[1.4ex](L \,\triangle\, M) \,\times\, R ~&~~=~~&& (L \,\times\, R) \,&&\triangle\, &&(M \,\times\, R) \qquad &&\text \,\times\, \text \,\triangle\, \text \\[1.4ex]\end

    \beginL \times (M \cap R) &\;=\;\;&& (L \times M) \cap (L \times R) \qquad&&\text \,\times\, \text \,\cap\, \text \\[1.4ex]L \times (M \cup R) &\;=\;\;&& (L \times M) \cup (L \times R) &&\text \,\times\, \text \,\cup\, \text \\[1.4ex]L \times (M \setminus R) &\;=\;\;&& (L \times M) \setminus (L \times R) &&\text \,\times\, \text \,\setminus\, \text \\[1.4ex]L \times (M \triangle R) &\;=\;\;&& (L \times M) \triangle (L \times R) &&\text \,\times\, \text \,\triangle\, \text \\[1.4ex]\end

    But in general, ⨯ does not distribute over itself:L \times (M \times R) ~\color\color~ (L \times M) \times (L \times R)(L \times M) \times R ~\color\color~ (L \times R) \times (M \times R).

    Binary ⋂ of finite ⨯

    (L \times R) \cap \left(L_2 \times R_2\right) ~=~ \left(L \cap L_2\right) \times \left(R \cap R_2\right)(L \times M \times R) \cap \left(L_2 \times M_2 \times R_2\right) ~=~ \left(L \cap L_2\right) \times \left(M \cap M_2\right) \times \left(R \cap R_2\right)

    Binary ⋃ of finite ⨯

    \begin\left(L \times R\right) ~\cup~ \left(L_2 \times R_2\right) ~&=~ \left[\left(L \setminus L_2\right) \times R\right] ~\cup~ \left[\left(L_2 \setminus L\right) \times R_2\right] ~\cup~ \left[\left(L \cap L_2\right) \times \left(R \cup R_2\right)\right] \\[0.5ex]~&=~ \left[L \times \left(R \setminus R_2\right)\right] ~\cup~ \left[L_2 \times \left(R_2 \setminus R\right)\right] ~\cup~ \left[\left(L \cup L_2\right) \times \left(R \cap R_2\right)\right] \\\end

    Difference \ of finite ⨯

    \begin\left(L \times R\right) ~\setminus~ \left(L_2 \times R_2\right) ~&=~ \left[\left(L \,\setminus\, L_2\right) \times R\right] ~\cup~ \left[L \times \left(R \,\setminus\, R_2\right)\right] \\\endand (L \times M \times R) ~\setminus~ \left(L_2 \times M_2 \times R_2\right) ~=~ \left[\left(L \,\setminus\, L_2\right) \times M \times R\right] ~\cup~ \left[L \times \left(M \,\setminus\, M_2\right) \times R\right] ~\cup~ \left[L \times M \times \left(R \,\setminus\, R_2\right)\right]

    Finite ⨯ of differences \

    \left(L \,\setminus\, L_2\right) \times \left(R \,\setminus\, R_2\right) ~=~ \left(L \times R\right) \,\setminus\, \left[\left(L_2 \times R\right) \cup \left(L \times R_2\right)\right]

    \left(L \,\setminus\, L_2\right) \times \left(M \,\setminus\, M_2\right) \times \left(R \,\setminus\, R_2\right) ~=~ \left(L \times M \times R\right) \,\setminus\, \left[\left(L_2 \times M \times R\right) \cup \left(L \times M_2 \times R\right) \cup \left(L \times M \times R_2\right)\right]

    Symmetric difference ∆ and finite ⨯

    L \times \left(R \,\triangle\, R_2\right) ~=~ \left[L \times \left(R \,\setminus\, R_2\right)\right] \,\cup\, \left[L \times \left(R_2 \,\setminus\, R\right)\right]\left(L \,\triangle\, L_2\right) \times R ~=~ \left[\left(L \,\setminus\, L_2\right) \times R\right] \,\cup\, \left[\left(L_2 \,\setminus\, L\right) \times R\right]

    \begin\left(L \,\triangle\, L_2\right) \times \left(R \,\triangle\, R_2\right) ~&=~ && && \,\left[\left(L \cup L_2\right) \times \left(R \cup R_2\right)\right] \;\setminus\; \left[\left(\left(L \cap L_2\right) \times R\right) \;\cup\; \left(L \times \left(R \cap R_2\right)\right)\right] \\[0.7ex]&=~ & &&& \,\left[\left(L \,\setminus\, L_2\right) \times \left(R_2 \,\setminus\, R\right)\right] \,\cup\, \left[\left(L_2 \,\setminus\, L\right) \times \left(R_2 \,\setminus\, R\right)\right] \,\cup\, \left[\left(L \,\setminus\, L_2\right) \times \left(R \,\setminus\, R_2\right)\right] \,\cup\, \left[\left(L_2 \,\setminus\, L\right) \cup \left(R \,\setminus\, R_2\right)\right] \\\end

    \begin\left(L \,\triangle\, L_2\right) \times \left(M \,\triangle\, M_2\right) \times \left(R \,\triangle\, R_2\right) ~&=~ \left[\left(L \cup L_2\right) \times \left(M \cup M_2\right) \times \left(R \cup R_2\right)\right] \;\setminus\; \left[\left(\left(L \cap L_2\right) \times M \times R\right) \;\cup\; \left(L \times \left(M \cap M_2\right) \times R\right) \;\cup\; \left(L \times M \times \left(R \cap R_2\right)\right)\right] \\\end

    In general,

    \left(L\triangleL2\right) x \left(R\triangleR2\right)

    need not be a subset nor a superset of

    \left(L x R\right)\triangle\left(L2 x R2\right).

    \begin\left(L \times R\right) \,\triangle\, \left(L_2 \times R_2\right)~&=~ && \left(L \times R\right) \cup \left(L_2 \times R_2\right) \;\setminus\; \left[\left(L \cap L_2\right) \times \left(R \cap R_2\right)\right] \\[0.7ex]\end

    \begin\left(L \times M \times R\right) \,\triangle\, \left(L_2 \times M_2 \times R_2\right)~&=~ && \left(L \times M \times R\right) \cup \left(L_2 \times M_2 \times R_2\right) \;\setminus\; \left[\left(L \cap L_2\right) \times \left(M \cap M_2\right) \times \left(R \cap R_2\right)\right] \\[0.7ex]\end

    Arbitrary families of sets

    Let

    \left(Li\right)i,

    \left(Rj\right)j,

    and

    \left(Si,j\right)(i,

    be indexed families of sets. Whenever the assumption is needed, then all indexing sets, such as

    I

    and

    J,

    are assumed to be non-empty.

    Definitions

    A or (more briefly) a refers to a set whose elements are sets.

    An is a function from some set, called its, into some family of sets. An indexed family of sets will be denoted by

    \left(Li\right)i,

    where this notation assigns the symbol

    I

    for the indexing set and for every index

    i\inI,

    assigns the symbol

    Li

    to the value of the function at

    i.

    The function itself may then be denoted by the symbol

    L\bull,

    which is obtained from the notation

    \left(Li\right)i

    by replacing the index

    i

    with a bullet symbol

    \bullet;

    explicitly,

    L\bull

    is the function:\beginL_\bull :\;&& I &&\;\to \;& \left\ \\[0.3ex] && i &&\;\mapsto\;& L_i \\\endwhich may be summarized by writing

    L\bull=\left(Li\right)i.

    Any given indexed family of sets

    L\bull=\left(Li\right)i

    (which is a function) can be canonically associated with its image/range

    \operatorname{Im}L\bull~\stackrel{\scriptscriptstyledef

    }~ \left\ (which is a family of sets). Conversely, any given family of sets

    l{B}

    may be associated with the

    l{B}

    -indexed family of sets

    (B)B

    }, which is technically the identity map

    l{B}\tol{B}.

    However, this is a bijective correspondence because an indexed family of sets

    L\bull=\left(Li\right)i

    is required to be injective (that is, there may exist distinct indices

    ij

    such as

    Li=Lj

    ), which in particular means that it is possible for distinct indexed families of sets (which are functions) to be associated with the same family of sets (by having the same image/range).

    Arbitrary unions defined

    If

    I=\varnothing

    then

    cupiLi=\{x~:~thereexistsi\in\varnothingsuchthatx\inLi\}=\varnothing,

    which is somethings called the (despite being called a convention, this equality follows from the definition).

    If

    l{B}

    is a family of sets then

    \cupl{B}

    denotes the set: \bigcup \mathcal ~~\stackrel~ \bigcup_ B ~~\stackrel~ \.

    Arbitrary intersections defined

    If

    I\varnothing

    then

    If

    l{B}\varnothing

    is a family of sets then

    \capl{B}

    denotes the set: \bigcap \mathcal ~~\stackrel~ \bigcap_ B ~~\stackrel~ \ ~=~ \.

    Nullary intersections

    If

    I=\varnothing

    then\bigcap_ L_i = \where every possible thing

    x

    in the universe vacuously satisfied the condition: "if

    i\in\varnothing

    then

    x\inLi

    ". Consequently,

    {stylecap\limitsi

    } L_i = \ consists of in the universe.

    So if

    I=\varnothing

    and:

    X

    then

    {stylecap\limitsi

    } L_i = \ ~=~ X.
    1. otherwise, if you are working in a model in which "the class of all things

    x

    " is not a set (by far the most common situation) then

    {stylecap\limitsi

    } L_i is because

    {stylecap\limitsi

    } L_i consists of, which makes

    {stylecap\limitsi

    } L_i a proper class and a set.

    Assumption: Henceforth, whenever a formula requires some indexing set to be non-empty in order for an arbitrary intersection to be well-defined, then this will automatically be assumed without mention.

    A consequence of this is the following assumption/definition:

    A of sets or an refers to the intersection of a finite collection of sets.

    Some authors adopt the so called , which is the convention that an empty intersection of sets is equal to some canonical set. In particular, if all sets are subsets of some set

    X

    then some author may declare that the empty intersection of these sets be equal to

    X.

    However, the nullary intersection convention is not as commonly accepted as the nullary union convention and this article will not adopt it (this is due to the fact that unlike the empty union, the value of the empty intersection depends on

    X

    so if there are multiple sets under consideration, which is commonly the case, then the value of the empty intersection risks becoming ambiguous).

    Multiple index sets\bigcup_ S_ ~~\stackrel~ \bigcup_ S_\bigcap_ S_ ~~\stackrel~ \bigcap_ S_

    Distributing unions and intersections

    Binary ⋂ of arbitrary ⋃'s

    and

    \left(Li\right)i

    are pairwise disjoint and all

    \left(Rj\right)j

    are also pairwise disjoint, then so are all

    \left(Li\capRj\right)(i,

    (that is, if

    (i,j)\left(i2,j2\right)

    then

    \left(Li\capRj\right)\cap

    \left(L
    i2

    \cap

    R
    j2

    \right)=\varnothing

    ).

    I=J

    then in general, ~\left(\bigcup_ L_i\right) \cap \left(\bigcup_ R_i\right) ~~\color\color~~ \bigcup_ \left(L_i \cap R_i\right)~ (an example of this is given below). The single union on the right hand side be over all pairs

    (i,j)\inI x I:

    ~\left(\bigcup_ L_i\right) \cap \left(\bigcup_ R_i\right) ~~=~~ \bigcup_ \left(L_i \cap R_j\right).~ The same is usually true for other similar non-trivial set equalities and relations that depend on two (potentially unrelated) indexing sets

    I

    and

    J

    (such as or). Two exceptions are (unions of unions) and (intersections of intersections), but both of these are among the most trivial of set equalities (although even for these equalities there is still something that must be proven).

    X\varnothing

    and let

    I=\{1,2\}.

    Let

    L1\colon=R2\colon=X

    and let

    L2\colon=R1\colon=\varnothing.

    Then X = X \cap X = \left(L_1 \cup L_2\right) \cap \left(R_2 \cup R_2\right) = \left(\bigcup_ L_i\right) \cap \left(\bigcup_ R_i\right) ~\neq~ \bigcup_ \left(L_i \cap R_i\right) = \left(L_1 \cap R_1\right) \cup \left(L_2 \cap R_2\right) = \varnothing \cup \varnothing = \varnothing. Furthermore, \varnothing = \varnothing \cup \varnothing = \left(L_1 \cap L_2\right) \cup \left(R_2 \cap R_2\right) = \left(\bigcap_ L_i\right) \cup \left(\bigcap_ R_i\right) ~\neq~ \bigcap_ \left(L_i \cup R_i\right) = \left(L_1 \cup R_1\right) \cap \left(L_2 \cup R_2\right) = X \cap X = X.

    Binary ⋃ of arbitrary ⋂'s

    and

    I=J

    then in general, ~\left(\bigcap_ L_i\right) \cup \left(\bigcap_ R_i\right) ~~\color\color~~ \bigcap_ \left(L_i \cup R_i\right)~ (an example of this is given above). The single intersection on the right hand side be over all pairs

    (i,j)\inI x I:

    ~\left(\bigcap_ L_i\right) \cup \left(\bigcap_ R_i\right) ~~=~~ \bigcap_ \left(L_i \cup R_j\right).~

    Arbitrary ⋂'s and arbitrary ⋃'s

    Incorrectly distributing by swapping ⋂ and ⋃

    Naively swapping

    {stylecup\limitsi

    }\; and

    {stylecap\limitsj

    }\; may produce a different set

    The following inclusion always holds:

    In general, equality need not hold and moreover, the right hand side depends on how for each fixed

    i\inI,

    the sets

    \left(Si,j\right)j

    are labelled; and analogously, the left hand side depends on how for each fixed

    j\inJ,

    the sets

    \left(Si,j\right)i

    are labelled. An example demonstrating this is now given.

    Equality in can hold under certain circumstances, such as in, which is the special case where

    \left(Si,j\right)(i,j)

    is

    \left(Li\setminusRj\right)(i,j)

    (that is,

    Si,j\colon=Li\setminusRj

    with the same indexing sets

    I

    and

    J

    ), or such as in, which is the special case where

    \left(Si,j\right)(i,j)

    is

    \left(Li\setminusRj\right)(j,

    (that is,

    \hat{S}j,i\colon=Li\setminusRj

    with the indexing sets

    I

    and

    J

    swapped).For a correct formula that extends the distributive laws, an approach other than just switching

    \cup

    and

    \cap

    is needed.
    Correct distributive laws

    Suppose that for each

    i\inI,

    Ji

    is a non-empty index set and for each

    j\inJi,

    let

    Ti,j

    be any set (for example, to apply this law to

    \left(Si,j\right)(i,,

    use

    Ji\colon=J

    for all

    i\inI

    and use

    Ti,j\colon=Si,j

    for all

    i\inI

    and all

    j\inJi=J

    ). Let J_ ~\stackrel~ \prod_ J_i denote the Cartesian product, which can be interpreted as the set of all functions

    f~:~I~\to~{stylecup\limitsi

    } J_i such that

    f(i)\inJi

    for every

    i\inI.

    Such a function may also be denoted using the tuple notation

    \left(fi\right)i

    where

    fi~\stackrel{\scriptscriptstyledef

    }~ f(i) for every

    i\inI

    and conversely, a tuple

    \left(fi\right)i

    is just notation for the function with domain

    I

    whose value at

    i\inI

    is

    fi;

    both notations can be used to denote the elements of

    {style\prod}J\bull.

    Then

    where

    {style\prod}J\bull~\stackrel{\scriptscriptstyledef

    }~ J_i.
    Applying the distributive laws

    In the particular case where all

    Ji

    are equal (that is,

    Ji=

    J
    i2
    for all

    i,i2\inI,

    which is the case with the family

    \left(Si,j\right)(i,,

    for example), then letting

    J

    denote this common set, the Cartesian product will be

    {style\prod}J\bull~\stackrel{\scriptscriptstyledef

    }~ J_i = J = J^I, which is the set of all functions of the form

    f~:~I~\to~J.

    The above set equalities and, respectively become:\bigcap_ \; \bigcup_ S_ = \bigcup_ \; \bigcap_ S_\bigcup_ \; \bigcap_ S_ = \bigcap_ \; \bigcup_ S_

    which when combined with implies: \bigcup_ \; \bigcap_ S_~=~ \bigcap_ \; \bigcup_ S_~~\color\color~~ \bigcup_ \; \bigcap_ S_~=~ \bigcap_ \; \bigcup_ S_where

    fandi

    range over

    f\inJIandi\inI

    (so the subscripts of

    Si,f(i)

    range over

    i\inIandf(i)\inf(I)\subseteqJ

    )

    gandj

    range over

    g\inIJandj\inJ

    (so the subscripts of

    Sg(j),j

    range over

    j\inJandg(j)\ing(J)\subseteqI

    ).

    To apply the general formula to the case of

    \left(Ck\right)k

    and

    \left(Dl\right)l,

    use

    I\colon=\{1,2\},

    J1\colon=K,

    J2\colon=L,

    and let

    T1,k\colon=Ck

    for all

    k\inJ1

    and let

    T2,l\colon=Dl

    for all

    l\inJ2.

    Every map

    f\in{style\prod}J\bull~\stackrel{\scriptscriptstyledef

    }~ J_i = J_1 \times J_2 = K \times L can be bijectively identified with the pair

    \left(f(1),f(2)\right)\inK x L

    (the inverse sends

    (k,l)\inK x L

    to the map

    f(k,l)\in{style\prod}J\bull

    defined by

    1\mapstok

    and

    2\mapstol;

    this is technically just a change of notation). Recall that was ~\bigcap_ \; \bigcup_ T_ = \bigcup_ \; \bigcap_ T_.~ Expanding and simplifying the left hand side gives\bigcap_ \; \bigcup_ T_= \left(\bigcup_ T_\right) \cap \left(\;\bigcup_ T_\right) = \left(\bigcup_ T_\right) \cap \left(\;\bigcup_ T_\right) = \left(\bigcup_ C_k\right) \cap \left(\;\bigcup_ D_l\right)and doing the same to the right hand side gives:\bigcup_ \; \bigcap_ T_= \bigcup_ \left(T_ \cap T_\right) = \bigcup_ \left(C_ \cap D_\right) = \bigcup_ \left(C_k \cap D_l\right) = \bigcup_ \left(C_k \cap D_l\right).

    Thus the general identity reduces down to the previously given set equality : \left(\bigcup_ C_k\right) \cap \;\bigcup_ D_l = \bigcup_ \left(C_k \cap D_l\right).

    Distributing subtraction over ⋃ and ⋂

    The next identities are known as De Morgan's laws.

    The following four set equalities can be deduced from the equalities - above.

    In general, naively swapping

    \cup

    and

    \cap

    may produce a different set (see this note for more details). The equalities \bigcup_ \; \bigcap_ \left(L_i \setminus R_j\right) ~=~ \bigcap_ \; \bigcup_ \left(L_i \setminus R_j\right)\quad \text \quad \bigcup_ \; \bigcap_ \left(L_i \setminus R_j\right) ~=~ \bigcap_ \; \bigcup_ \left(L_i \setminus R_j\right) found in and are thus unusual in that they state exactly that swapping

    \cup

    and

    \cap

    will change the resulting set.

    Commutativity and associativity of ⋃ and ⋂

    Commutativity:

    \bigcup_ S_ ~~\stackrel~ \bigcup_ S_ ~=~ \bigcup_ \left(\bigcup_ S_\right) ~=~ \bigcup_ \left(\bigcup_ S_\right)

    \bigcap_ S_ ~~\stackrel~ \bigcap_ S_ ~=~ \bigcap_ \left(\bigcap_ S_\right) ~=~ \bigcap_ \left(\bigcap_ S_\right)

    Unions of unions and intersections of intersections:

    \left(\bigcup_ L_i\right) \cup R ~=~ \bigcup_ \left(L_i \cup R\right)\left(\bigcap_ L_i\right) \cap R ~=~ \bigcap_ \left(L_i \cap R\right)and

    and if

    I=J

    then also:[4]

    Cartesian products Π of arbitrarily many sets

    Intersections ⋂ of Π

    If

    \left(Si,j\right)(i,j)

    is a family of sets then

    \left(xi\right)i

    belongs to the set in above if and only if

    xi\inSi,j

    for all

    i\inI

    and all

    j\inJ.

    In particular, if

    \left(Li\right)i

    and

    \left(Ri\right)i

    are two families indexed by the same set then \left(\prod_ L_i\right) \cap \prod_ R_i ~=~ \prod_ \left(L_i \cap R_i\right)So for instance, (L \times R) \cap \left(L_2 \times R_2\right) ~=~ \left(L \cap L_2\right) \times \left(R \cap R_2\right)(L \times R) \cap \left(L_2 \times R_2\right) \cap \left(L_3 \times R_3\right) ~=~ \left(L \cap L_2 \cap L_3\right) \times \left(R \cap R_2 \cap R_3\right) and (L \times M \times R) \cap \left(L_2 \times M_2 \times R_2\right) ~=~ \left(L \cap L_2\right) \times \left(M \cap M_2\right) \times \left(R \cap R_2\right)

    Intersections of products indexed by different sets

    Let

    \left(Li\right)i

    and

    \left(Rj\right)j

    be two families indexed by different sets.

    Technically,

    IJ

    implies

    \left({style\prod\limitsi

    } L_i\right) \cap R_j = \varnothing. However, sometimes these products are somehow identified as the same set through some bijection or one of these products is identified as a subset of the other via some injective map, in which case (by abuse of notation) this intersection may be equal to some other (possibly non-empty) set.

    I:=\{1,2\}

    and

    J:=\{1,2,3\}

    with all sets equal to

    \R

    then

    {style\prod\limitsi

    } L_i = \R = \R^2 and

    {style\prod\limitsj

    } R_j = \R = \R^3 where

    \R2\cap\R3=\varnothing

    , for example,

    {style\prod\limitsi

    }} \R = \R^2 is identified as a subset of

    {style\prod\limitsj

    }} \R = \R^3 through some injection, such as maybe

    (x,y)\mapsto(x,y,0)

    for instance; however, in this particular case the product

    {style\prod\limitsi

    }} L_i actually represents the

    J

    -indexed product

    {style\prod\limitsj

    }} L_i where

    L3:=\{0\}.

    I:=\{1,2\}

    and

    J:=\{1,2,3\}

    with

    L1:=\R2

    and

    L2,R1,R2,andR3

    all equal to

    \R.

    Then

    {style\prod\limitsi

    }L_i = \R^2 \times \R and

    {style\prod\limitsj

    } R_j = \R \times \R \times \R, which can both be identified as the same set via the bijection that sends

    ((x,y),z)\in\R2 x \R

    to

    (x,y,z)\in\R x \R x \R.

    Under this identification,

    \left({style\prod\limitsi

    } L_i\right) \cap \, R_j ~=~ \R^3.

    Binary ⨯ distributes over arbitrary ⋃ and ⋂

    The binary Cartesian product ⨯ distributes over arbitrary intersections (when the indexing set is not empty) and over arbitrary unions:

    \beginL \times \left(\bigcup_ R_i\right) &\;=\;\;&& \bigcup_ (L \times R_i) \qquad&&\text \,\times\, \text \,\cup\, \text \\[1.4ex]L \times \left(\bigcap_ R_i\right) &\;=\;\;&& \bigcap_ (L \times R_i) \qquad&&\text \,\times\, \text \,\bigcap_\, \text I \neq \varnothing\, \text \\[1.4ex]\left(\bigcup_ L_i\right) \times R &\;=\;\;&& \bigcup_ (L_i \times R) \qquad&&\text \,\times\, \text \,\cup\, \text \\[1.4ex]\left(\bigcap_ L_i\right) \times R &\;=\;\;&& \bigcap_ (L_i \times R) \qquad&&\text \,\times\, \text \,\bigcap_\, \text I \neq \varnothing\, \text \\[1.4ex]\end

    Distributing arbitrary Π over arbitrary ⋃

    Suppose that for each

    i\inI,

    Ji

    is a non-empty index set and for each

    j\inJi,

    let

    Ti,j

    be any set (for example, to apply this law to

    \left(Si,j\right)(i,,

    use

    Ji\colon=J

    for all

    i\inI

    and use

    Ti,j\colon=Si,j

    for all

    i\inI

    and all

    j\inJi=J

    ). Let J_ ~\stackrel~ \prod_ J_i denote the Cartesian product, which (as mentioned above) can be interpreted as the set of all functions

    f~:~I~\to~{stylecup\limitsi

    } J_i such that

    f(i)\inJi

    for every

    i\inI

    .Then

    where

    {style\prod}J\bull~\stackrel{\scriptscriptstyledef

    }~ J_i.

    Unions ⋃ of Π

    For unions, only the following is guaranteed in general:\bigcup_ \; \prod_ S_ ~~\color\color~~ \prod_ \; \bigcup_ S_ \qquad \text \qquad \bigcup_ \; \prod_ S_ ~~\color\color~~ \prod_ \; \bigcup_ S_where

    \left(Si,j\right)(i,j)

    is a family of sets.

    I=J=\{1,2\},

    let

    S1,1=S2,2=\varnothing,

    let

    X\varnothing,

    and let

    S1,2=S2,1=X.

    Then \varnothing = \varnothing \cup \varnothing = \left(\prod_ S_\right) \cup \left(\prod_ S_\right) = \bigcup_ \; \prod_ S_ ~~\color\color~~ \prod_ \; \bigcup_ S_ = \left(\bigcup_ S_\right) \times \left(\bigcup_ S_\right) = X \times X. More generally, \varnothing = \bigcup_ \; \prod_ S_ if and only if for each

    j\inJ,

    at least one of the sets in the

    I

    -indexed collections of sets

    S\bullet,j=\left(Si,j\right)i\in

    is empty, while \prod_ \; \bigcup_ S_ \neq \varnothing if and only if for each

    i\inI,

    at least one of the sets in the

    J

    -indexed collections of sets

    Si,\bullet=\left(Si,j\right)j\in

    is not empty.

    However, \begin\left(L \times R\right) ~\cup~ \left(L_2 \times R_2\right) ~&=~ \left[\left(L \setminus L_2\right) \times R\right] ~\cup~ \left[\left(L_2 \setminus L\right) \times R_2\right] ~\cup~ \left[\left(L \cap L_2\right) \times \left(R \cup R_2\right)\right] \\[0.5ex]~&=~ \left[L \times \left(R \setminus R_2\right)\right] ~\cup~ \left[L_2 \times \left(R_2 \setminus R\right)\right] ~\cup~ \left[\left(L \cup L_2\right) \times \left(R \cap R_2\right)\right] \\\end

    Difference \ of Π

    If

    \left(Li\right)i

    and

    \left(Ri\right)i

    are two families of sets then:\begin\left(\prod_ L_i\right) ~\setminus~ \prod_R_i~&=~ \;~ \bigcup_ \; ~ \prod_ \beginL_j \,\setminus\, R_j & \text i = j \\ L_i & \text i \neq j \\ \end \\[0.5ex]~&=~ \;~ \bigcup_ \; ~ \Big[\left(L_j \,\setminus\, R_j\right) ~\times~ \prod_{\stackrel{i \in I,}{j \neq i}} L_i\Big] \\[0.5ex]~&=~ \bigcup_ \Big[\left(L_j \,\setminus\, R_j\right) ~\times~ \prod_{\stackrel{i \in I,}{j \neq i}} L_i\Big] \\[0.3ex]\endso for instance,\begin\left(L \times R\right) ~\setminus~ \left(L_2 \times R_2\right) ~&=~ \left[\left(L \,\setminus\, L_2\right) \times R\right] ~\cup~ \left[L \times \left(R \,\setminus\, R_2\right)\right] \\\endand (L \times M \times R) ~\setminus~ \left(L_2 \times M_2 \times R_2\right) ~=~ \left[\left(L \,\setminus\, L_2\right) \times M \times R\right] ~\cup~ \left[L \times \left(M \,\setminus\, M_2\right) \times R\right] ~\cup~ \left[L \times M \times \left(R \,\setminus\, R_2\right)\right]

    Symmetric difference ∆ of Π

    \begin\left(\prod_ L_i\right) ~\triangle~ \left(\prod_ R_i\right)~&=~ \;~ \left(\prod_ L_i\right) ~\cup~ \left(\prod_ R_i\right) \;\setminus\; \prod_ L_i \cap R_i \\[0.5ex]\end

    Functions and sets

    Let

    f:X\toY

    be any function.

    Let

    LandR

    be completely arbitrary sets. Assume

    A\subseteqXandC\subseteqY.

    Definitions

    Let

    f:X\toY

    be any function, where we denote its

    X

    by

    \operatorname{domain}f

    and denote its

    Y

    by

    \operatorname{codomain}f.

    Many of the identities below do not actually require that the sets be somehow related to

    f

    's domain or codomain (that is, to

    X

    or

    Y

    ) so when some kind of relationship is necessary then it will be clearly indicated. Because of this, in this article, if

    L

    is declared to be "," and it is not indicated that

    L

    must be somehow related to

    X

    or

    Y

    (say for instance, that it be a subset

    X

    or

    Y

    ) then it is meant that

    L

    is truly arbitrary.[5] This generality is useful in situations where

    f:X\toY

    is a map between two subsets

    X\subseteqU

    and

    Y\subseteqV

    of some larger sets

    U

    and

    V,

    and where the set

    L

    might not be entirely contained in

    X=\operatorname{domain}f

    and/or

    Y=\operatorname{codomain}f

    (e.g. if all that is known about

    L

    is that

    L\subseteqU

    ); in such a situation it may be useful to know what can and cannot be said about

    f(L)

    and/or

    f-1(L)

    without having to introduce a (potentially unnecessary) intersection such as:

    f(L\capX)

    and/or

    f-1(L\capY).

    Images and preimages of sets

    If

    L

    is set then the is defined to be the set: f(L) ~\stackrel~ \while the is: f^(L) ~\stackrel~ \where if

    L=\{s\}

    is a singleton set then the or isf^(s) ~\stackrel~ f^(\) ~=~ \.

    Denote by

    \operatorname{Im}f

    or

    \operatorname{image}f

    the or of

    f:X\toY,

    which is the set: \operatorname f ~\stackrel~ f(X) ~\stackrel~ f(\operatorname f) ~=~ \.

    Saturated sets

    See main article: Saturated set.

    A set

    A

    is said to be or a if any of the following equivalent conditions are satisfied:
    1. There exists a set

      R

      such that

      A=f-1(R).

      • Any such set

      R

      necessarily contains

      f(A)

      as a subset.
      • Any set not entirely contained in the domain of

      f

      cannot be

      f

      -saturated.
    2. A=f-1(f(A)).

    3. A\supseteqf-1(f(A))

      and

      A\subseteq\operatorname{domain}f.

      • The inclusion

      L\cap\operatorname{domain}f\subseteqf-1(f(L))

      always holds, where if

      A\subseteq\operatorname{domain}f

      then this becomes

      A\subseteqf-1(f(A)).

    4. A\subseteq\operatorname{domain}f

      and if

      a\inA

      and

      x\in\operatorname{domain}f

      satisfy

      f(x)=f(a),

      then

      x\inA.

    5. Whenever a fiber of

      f

      intersects

      A,

      then

      A

      contains the entire fiber. In other words,

      A

      contains every

      f

      -fiber that intersects it.
    6. y\in\operatorname{Im}f

      is such that

      A\capf-1(y)\varnothing,

      then

      f-1(y)s\subseteqA.

      \operatorname{Im}f

      may be replaced with any superset of

      \operatorname{Im}f

      (such as

      \operatorname{codomain}f

      ) and the resulting statement will still be equivalent to the rest.
    7. The intersection of

      A

      with a fiber of

      f

      is equal to the empty set or to the fiber itself.
      • Explicitly: for every

      y\in\operatorname{Im}f,

      the intersection

      A\capf-1(y)

      is equal to the empty set

      \varnothing

      or to

      f-1(y)

      (that is,

      A\capf-1(y)=\varnothing

      or

      A\capf-1(y)=f-1(y)

      ).
    For a set

    A

    to be

    f

    -saturated, it is necessary that

    A\subseteq\operatorname{domain}f.

    Compositions and restrictions of functions

    If

    f

    and

    g

    are maps then

    g\circf

    denotes the map g \circ f ~:~ \ ~\to~ \operatorname gwith domain and codomain\begin\operatorname (g \circ f) &= \ \\[0.4ex]\operatorname (g \circ f) &= \operatorname g \\[0.7ex]\end defined by(g \circ f)(x) ~\stackrel~ g(f(x)).

    The denoted by

    f\vertL,

    is the map f\big\vert_L ~:~ L \cap \operatorname f ~\to~ Ywith

    \operatorname{domain}f\vertL~=~L\cap\operatorname{domain}f

    defined by sending

    x\inL\cap\operatorname{domain}f

    to

    f(x);

    that is, f\big\vert_L(x) ~\stackrel~ f (x). Alternatively,

    ~f\vertL~=~f\circ\operatorname{In}~

    where

    ~\operatorname{In}~:~L\capX\toX~

    denotes the inclusion map, which is defined by

    \operatorname{In}(s)~\stackrel{\scriptscriptstyledef

    }~ s.

    (Pre)Images of arbitrary unions ⋃'s and intersections ⋂'s

    If

    \left(Li\right)i

    is a family of arbitrary sets indexed by

    I\varnothing

    then:\beginf\left(\bigcap_ L_i\right) \;&~\;\color\color~ \;\;\;\bigcap_ f\left(L_i\right) \\f\left(\bigcup_ L_i\right) \;&~=~ \;\bigcup_ f\left(L_i\right) \\f^\left(\bigcup_ L_i\right) \;&~=~ \;\bigcup_ f^\left(L_i\right) \\f^\left(\bigcap_ L_i\right) \;&~=~ \;\bigcap_ f^\left(L_i\right) \\\end

    So of these four identities, it is that are not always preserved. Preimages preserve all basic set operations. Unions are preserved by both images and preimages.

    If all

    Li

    are

    f

    -saturated then

    capiLi

    be will be

    f

    -saturated and equality will hold in the first relation above; explicitly, this means:

    If

    \left(Ai\right)i

    is a family of arbitrary subsets of

    X=\operatorname{domain}f,

    which means that

    Ai\subseteqX

    for all

    i,

    then becomes:

    (Pre)Images of binary set operations

    Throughout, let

    L

    and

    R

    be any sets and let

    f:X\toY

    be any function.

    Summary

    As the table below shows, set equality is guaranteed for of: intersections, set subtractions, and symmetric differences.

    ImagePreimage

    ~~~~f(L\cupR)~=~f(L)\cupf(R)

    f-1(L\cupR)~=~f-1(L)\cupf-1(R)

    None
    f(L \cap R) ~\subseteq~ f(L) \cap f(R)

    f-1(L\capR)~=~f-1(L)\capf-1(R)

    None
    f(L \setminus R) ~\supseteq~ f(L) \setminus f(R)

    \begin{alignat}{4} f-1(L)\setminusf-1(R)&=f-1&&(&&L&&\setminus&&R)\\ &=f-1&&(&&L&&\setminus[&&R\cap\operatorname{Im}f])\\ &=f-1&&([&&L\cap\operatorname{Im}f]&&\setminus&&R)\\ &=f-1&&([&&L\cap\operatorname{Im}f]&&\setminus[&&R\cap\operatorname{Im}f])\end{alignat}

    None
    f(X \setminus R) ~\supseteq~ f(X) \setminus f(R)

    \begin{alignat}{4} X\setminusf-1(R)&=f-1(&&Y&&\setminus&&R)\\ &=f-1(&&Y&&\setminus[&&R\cap\operatorname{Im}f])\\ &=f-1(&&\operatorname{Im}f&&\setminus&&R)\\ &=f-1(&&\operatorname{Im}f&&\setminus[&&R\cap\operatorname{Im}f])\end{alignat}

    [6]
    None
    f\left(L ~\triangle~ R\right) ~\supseteq~ f(L) ~\triangle~ f(R)

    f-1\left(L~\triangle~R\right)~=~f-1(L)~\triangle~f-1(R)

    None

    Preimages preserve set operations

    Preimages of sets are well-behaved with respect to all basic set operations:

    \beginf^(L \cup R) ~&=~ f^(L) \cup f^(R) \\f^(L \cap R) ~&=~ f^(L) \cap f^(R) \\f^(L \setminus\, R) ~&=~ f^(L) \setminus\, f^(R) \\f^(L \,\triangle\, R) ~&=~ f^(L) \,\triangle\, f^(R) \\\end

    In words, preimages distribute over unions, intersections, set subtraction, and symmetric difference.

    Images preserve unions

    Images of unions are well-behaved:

    \beginf(L \cup R) ~&=~ f(L) \cup f(R) \\\end

    but images of the other basic set operations are since only the following are guaranteed in general:

    \beginf(L \cap R) ~&\subseteq~ f(L) \cap f(R) \\f(L \setminus R) ~&\supseteq~ f(L) \setminus f(R) \\f(L \triangle R) ~&\supseteq~ f(L) \,\triangle\, f(R) \\\end

    L\setminusR

    or else they can naturally as the set subtraction of two sets: L \cap R = L \setminus (L \setminus R) \quad \text \quad L \triangle R = (L \cup R) \setminus (L \cap R).

    If

    L=X

    then

    f(X\setminusR)\supseteqf(X)\setminusf(R)

    where as in the more general case, equality is not guaranteed. If

    f

    is surjective then

    f(X\setminusR)~\supseteq~Y\setminusf(R),

    which can be rewritten as:

    f\left(R\complement\right)~\supseteq~f(R)\complement

    if

    R\complement~\stackrel{\scriptscriptstyledef

    }~ X \setminus R and

    f(R)\complement~\stackrel{\scriptscriptstyledef

    }~ Y \setminus f(R).

    Counter-examples: images of operations not distributing

    If

    f:\{1,2\}\toY

    is constant,

    L=\{1\},

    and

    R=\{2\}

    then all four of the set containments\beginf(L \cap R) ~&\subsetneq~ f(L) \cap f(R) \\f(L \setminus R) ~&\supsetneq~ f(L) \setminus f(R) \\f(X \setminus R) ~&\supsetneq~ f(X) \setminus f(R) \\f(L \triangle R) ~&\supsetneq~ f(L) \triangle f(R) \\\endare strict/proper (that is, the sets are not equal) since one side is the empty set while the other is non-empty. Thus equality is not guaranteed for even the simplest of functions. The example above is now generalized to show that these four set equalities can fail for any constant function whose domain contains at least two (distinct) points.

    Let

    f:X\toY

    be any constant function with image

    f(X)=\{y\}

    and suppose that

    L,R\subseteqX

    are non-empty disjoint subsets; that is,

    L\varnothing,R\varnothing,

    and

    L\capR=\varnothing,

    which implies that all of the sets

    L~\triangle~R=L\cupR,

    L\setminusR=L,

    and

    X\setminusR\supseteqL\setminusR

    are not empty and so consequently, their images under

    f

    are all equal to

    \{y\}.

    1. The containment

      ~f(L\setminusR)~\supsetneq~f(L)\setminusf(R)~

      is strict: \ ~=~ f(L \setminus R) ~\neq~ f(L) \setminus f(R) ~=~ \ \setminus \ ~=~ \varnothingIn words: functions might not distribute over set subtraction

      \setminus

    2. The containment

      ~f(X\setminusR)~\supsetneq~f(X)\setminusf(R)~

      is strict: \ ~=~ f(X \setminus R) ~\neq~ f(X) \setminus f(R) ~=~ \ \setminus \ ~=~ \varnothing.
    3. The containment

      ~f(L~\triangle~R)~\supsetneq~f(L)~\triangle~f(R)~

      is strict: \ ~=~ f\left(L ~\triangle~ R\right) ~\neq~ f(L) ~\triangle~ f(R) ~=~ \ \triangle \ ~=~ \varnothingIn words: functions might not distribute over symmetric difference

      \triangle

      (which can be defined as the set subtraction of two sets:

      L\triangleR=(L\cupR)\setminus(L\capR)

      ).
    4. The containment

      ~f(L\capR)~\subsetneq~f(L)\capf(R)~

      is strict: \varnothing ~=~ f(\varnothing) ~=~ f(L \cap R) ~\neq~ f(L) \cap f(R) ~=~ \ \cap \ ~=~ \In words: functions might not distribute over set intersection

      \cap

      (which can be defined as the set subtraction of two sets:

      L\capR=L\setminus(L\setminusR)

      ).

    \setminus

    (examples (1) and (2)) or else they can naturally as the set subtraction of two sets (examples (3) and (4)).

    Mnemonic: In fact, for each of the above four set formulas for which equality is not guaranteed, the direction of the containment (that is, whether to use

    \subseteqor\supseteq

    ) can always be deduced by imagining the function

    f

    as being and the two sets (

    L

    and

    R

    ) as being non-empty disjoint subsets of its domain. This is because equality fails for such a function and sets: one side will be always be

    \varnothing

    and the other non-empty − from this fact, the correct choice of

    \subseteqor\supseteq

    can be deduced by answering: "which side is empty?" For example, to decide if the

    ?

    in f(L \triangle R) \setminus f(R) ~\;~?~\;~ f((L \triangle R) \setminus R)should be

    \subseteqor\supseteq,

    pretend[7] that

    f

    is constant and that

    L\triangleR

    and

    R

    are non-empty disjoint subsets of

    f

    's domain; then the hand side would be empty (since

    f(L\triangleR)\setminusf(R)=\{f'ssinglevalue\}\setminus\{f'ssinglevalue\}=\varnothing

    ), which indicates that

    ?

    should be

    \subseteq

    (the resulting statement is always guaranteed to be true) because this is the choice that will make\varnothing = \text ~\;~?~\;~ \texttrue. Alternatively, the correct direction of containment can also be deduced by consideration of any constant

    f:\{1,2\}\toY

    with

    L=\{1\}

    and

    R=\{2\}.

    Furthermore, this mnemonic can also be used to correctly deduce whether or not a set operation always distribute over images or preimages; for example, to determine whether or not

    f(L\capR)

    always equals

    f(L)\capf(R),

    or alternatively, whether or not

    f-1(L\capR)

    always equals

    f-1(L)\capf-1(R)

    (although

    \cap

    was used here, it can replaced by

    \cup,\setminus,or\triangle

    ). The answer to such a question can, as before, be deduced by consideration of this constant function: the answer for the general case (that is, for arbitrary

    f,L,

    and

    R

    ) is always the same as the answer for this choice of (constant) function and disjoint non-empty sets.

    Conditions guaranteeing that images distribute over set operations

    Characterizations of when equality holds for sets:

    For any function

    f:X\toY,

    the following statements are equivalent:
    1. f:X\toY

      is injective.
      • This means:

      f(x)f(y)

      for all distinct

      x,y\inX.

    2. f(L\capR)=f(L)\capf(R)forallL,R\subseteqX.

      (The equals sign

      =

      can be replaced with

      \supseteq

      ).
    3. f(L\setminusR)=f(L)\setminusf(R)forallL,R\subseteqX.

      (The equals sign

      =

      can be replaced with

      \subseteq

      ).
    4. f(X\setminusR)=f(X)\setminusf(R)forall~~~~~R\subseteqX.

      (The equals sign

      =

      can be replaced with

      \subseteq

      ).
    5. f(L\triangleR)=f(L)\trianglef(R)forallL,R\subseteqX.

      (The equals sign

      =

      can be replaced with

      \subseteq

      ).
    6. Any one of the four statements (b) - (e) but with the words "for all" replaced with any one of the following:
      1. "for all singleton subsets"
        • In particular, the statement that results from (d) gives a characterization of injectivity that explicitly involves only one point (rather than two):

        f

        is injective if and only if

        f(x)\not\inf(X\setminus\{x\})foreveryx\inX.

      2. "for all disjoint singleton subsets"
        • For statement (d), this is the same as: "for all singleton subsets" (because the definition of "pairwise disjoint" is satisfies vacuously by any family that consists of exactly 1 set).

      3. "for all disjoint subsets"

    In particular, if a map is not known to be injective then barring additional information, there is no guarantee that any of the equalities in statements (b) - (e) hold.

    An example above can be used to help prove this characterization. Indeed, comparison of that example with such a proof suggests that the example is representative of the fundamental reason why one of these four equalities in statements (b) - (e) might not hold (that is, representative of "what goes wrong" when a set equality does not hold).

    Conditions for f(L⋂R) = f(L)⋂f(R)

    f(L \cap R) ~\subseteq~ f(L) \cap f(R) \qquad\qquad \text

    Characterizations of equality: The following statements are equivalent:

    1. f(L\capR)~=~f(L)\capf(R)

    2. f(L\capR)~\supseteq~f(L)\capf(R)

    3. L\capf-1(f(R))~\subseteq~f-1(f(L\capR))

      • The left hand side

      L\capf-1(f(R))

      is always equal to

      L\capf-1(f(L)\capf(R))

      (because

      L\capf-1(f(R))~\subseteq~f-1(f(L))

      always holds).
    4. R\capf-1(f(L))~\subseteq~f-1(f(L\capR))

    5. L\capf-1(f(R))~=~f-1(f(L\capR))\capL

    6. R\capf-1(f(L))~=~f-1(f(L\capR))\capR

    7. If

      l\inL

      satisfies

      f(l)\inf(R)

      then

      f(l)\inf(L\capR).

    8. If

      y\inf(L)

      but

      y\notinf(L\capR)

      then

      y\notinf(R).

    9. f(L)\setminusf(L\capR)~\subseteq~f(L)\setminusf(R)

    10. f(R)\setminusf(L\capR)~\subseteq~f(R)\setminusf(L)

    11. f(L\cupR)\setminusf(L\capR)~\subseteq~f(L)\trianglef(R)

    12. Any of the above three conditions (i) - (k) but with the subset symbol

      \subseteq

      replaced with an equals sign

      =.

    Sufficient conditions for equality: Equality holds if any of the following are true:

    1. f

      is injective.[8]
    2. The restriction

      f\vertL

      is injective.
    3. f-1(f(R))~\subseteq~R

    4. f-1(f(L))~\subseteq~L

    5. R

      is

      f

      -saturated; that is,

      f-1(f(R))=R

    6. L

      is

      f

      -saturated; that is,

      f-1(f(L))=L

    7. f(L)~\subseteq~f(L\capR)

    8. f(R)~\subseteq~f(L\capR)

    9. f(L\setminusR)~\subseteq~f(L)\setminusf(R)

      or equivalently,

      f(L\setminusR)~=~f(L)\setminusf(R)

    10. f(R\setminusL)~\subseteq~f(R)\setminusf(L)

      or equivalently,

      f(R\setminusL)~=~f(R)\setminusf(L)

    11. f\left(L~\triangle~R\right)\subseteqf(L)~\triangle~f(R)

      or equivalently,

      f\left(L~\triangle~R\right)=f(L)~\triangle~f(R)

    12. R\cap\operatorname{domain}f\subseteqL

    13. L\cap\operatorname{domain}f\subseteqR

    14. R\subseteqL

    15. L\subseteqR

    In addition, the following always hold:f\left(f^(L) \cap R\right) ~=~ L \cap f(R)f\left(f^(L) \cup R\right) ~=~ (L \cap \operatorname f) \cup f(R)

    Conditions for f(L\R) = f(L)\f(R)

    f(L \setminus R) ~\supseteq~ f(L) \setminus f(R) \qquad\qquad \text

    Characterizations of equality: The following statements are equivalent:

    1. f(L\setminusR)~=~f(L)\setminusf(R)

    2. f(L\setminusR)~\subseteq~f(L)\setminusf(R)

    3. L\capf-1(f(R))~\subseteq~R

    4. L\capf-1(f(R))~=~L\capR\cap\operatorname{domain}f

    5. Whenever

      y\inf(L)\capf(R)

      then

      L\capf-1(y)\subseteqR.

    6. f(L) \cap f(R) ~\subseteq~ \left\
      • The set on the right hand side is always equal to

      \left\{y\inf(L\capR):L\capf-1(y)\subseteqR\right\}.

    7. f(L) \cap f(R) ~=~ \left\
      • This is the above condition (f) but with the subset symbol

      \subseteq

      replaced with an equals sign

      =.

    Necessary conditions for equality (excluding characterizations): If equality holds then the following are necessarily true:

    1. f(L\capR)=f(L)\capf(R),

      or equivalently

      f(L\capR)\supseteqf(L)\capf(R).

    2. L\capf-1(f(R))~=~L\capf-1(f(L\capR))

      or equivalently,

      L\capf-1(f(R))~\subseteq~f-1(f(L\capR))

    3. R\capf-1(f(L))~=~R\capf-1(f(L\capR))

    Sufficient conditions for equality: Equality holds if any of the following are true:

    1. f

      is injective.
    2. The restriction

      f\vertL

      is injective.
    3. f-1(f(R))~\subseteq~R

      [9] or equivalently,

      R\cap\operatorname{domain}f~=~f-1(f(R))

    4. R

      is

      f

      -saturated; that is,

      R=f-1(f(R)).

      [9]
    5. f\left(L~\triangle~R\right)\subseteqf(L)~\triangle~f(R)

      or equivalently,

      f\left(L~\triangle~R\right)=f(L)~\triangle~f(R)

    Conditions for f(X\R) = f(X)\f(R)

    f(X \setminus R) ~\supseteq~ f(X) \setminus f(R) \qquad\qquad \text f : X \to Y

    Characterizations of equality: The following statements are equivalent:

    1. f(X\setminusR)~=~f(X)\setminusf(R)

    2. f(X\setminusR)~\subseteq~f(X)\setminusf(R)

    3. f-1(f(R))\subseteqR

    4. f-1(f(R))=R\cap\operatorname{domain}f

    5. R\cap\operatorname{domain}f

      is

      f

      -saturated.
    6. Whenever

      y\inf(R)

      then

      f-1(y)\subseteqR.

    7. f(R) ~\subseteq~ \left\
    8. f(R) ~=~ \left\
       where if

    R\subseteq\operatorname{domain}f

    then this list can be extended to include:
    1. R

      is

      f

      -saturated; that is,

      R=f-1(f(R)).

    Sufficient conditions for equality: Equality holds if any of the following are true:

    1. f

      is injective.
    2. R

      is

      f

      -saturated; that is,

      R=f-1(f(R)).

    Conditions for f(L∆R) = f(L)∆f(R)

    f\left(L ~\triangle~ R\right) ~\supseteq~ f(L) ~\triangle~ f(R) \qquad\qquad \text

    Characterizations of equality: The following statements are equivalent:

    1. f\left(L~\triangle~R\right)=f(L)~\triangle~f(R)

    2. f\left(L~\triangle~R\right)\subseteqf(L)~\triangle~f(R)

    3. f(L\setminusR)=f(L)\setminusf(R)

       and 

      f(R\setminusL)=f(R)\setminusf(L)

    4. f(L\setminusR)\subseteqf(L)\setminusf(R)

       and 

      f(R\setminusL)\subseteqf(R)\setminusf(L)

    5. L\capf-1(f(R))~\subseteq~R

       and 

      R\capf-1(f(L))~\subseteq~L

      • The inclusions

      L\capf-1(f(R))~\subseteq~f-1(f(L))

      and

      R\capf-1(f(L))~\subseteq~f-1(f(R))

      always hold.
    6. L\capf-1(f(R))~=~R\capf-1(f(L))

      • If this above set equality holds, then this set will also be equal to both

      L\capR\cap\operatorname{domain}f

      and

      L\capR\capf-1(f(L\capR)).

    7. L\capf-1(f(L\capR))~=~R\capf-1(f(L\capR))

       and 

      f(L\capR)~\supseteq~f(L)\capf(R).

    Necessary conditions for equality (excluding characterizations): If equality holds then the following are necessarily true:

    1. f(L\capR)=f(L)\capf(R),

      or equivalently

      f(L\capR)\supseteqf(L)\capf(R).

    2. L\capf-1(f(L\capR))~=~R\capf-1(f(L\capR))

    Sufficient conditions for equality: Equality holds if any of the following are true:

    1. f

      is injective.
    2. The restriction

      f\vertL

      is injective.

    Exact formulas/equalities for images of set operations

    Formulas for f(L\R) =

    For any function

    f:X\toY

    and any sets

    L

    and

    R,

    [10] \beginf(L \setminus R)&= Y ~~~\;\,\, \setminus \left\ \\[0.4ex]&= f(L) \setminus \left\ \\[0.4ex]&= f(L) \setminus \left\ \\[0.4ex]&= f(L) \setminus \left\ \qquad && \text \quad V \supseteq f(L \cap R) \\[0.4ex]&= f(S) \setminus \left\ \qquad && \text \quad S \supseteq L \cap X. \\[0.7ex]\end
    Formulas for f(X\R) =

    Taking

    L:=X=\operatorname{domain}f

    in the above formulas gives:\beginf(X \setminus R)&= Y ~~~\;\,\, \setminus \left\ \\[0.4ex]&= f(X) \setminus \left\ \\[0.4ex]&= f(X) \setminus \left\ \\[0.4ex]&= f(X) \setminus \left\ \qquad \text \quad W \supseteq f(R) \\[0.4ex]\endwhere the set

    \left\{y\inf(R):f-1(y)\subseteqR\right\}

    is equal to the image under

    f

    of the largest

    f

    -saturated subset of

    R.

    Formulas for f(L∆R) =

    It follows from

    L\triangleR=(L\cupR)\setminus(L\capR)

    and the above formulas for the image of a set subtraction that for any function

    f:X\toY

    and any sets

    L

    and

    R,

    \beginf(L \,\triangle\, R)&= Y ~~~\;~~~\;~~~\; \setminus \left\ \\[0.4ex]&= f(L \cup R) \setminus \left\ \\[0.4ex]&= f(L \cup R) \setminus \left\ \\[0.4ex]&= f(L \cup R) \setminus \left\ \qquad && \text \quad V \supseteq f(L \cap R) \\[0.4ex]&= f(S) ~~\,~~~\,~\, \setminus \left\ \qquad && \text \quad S \supseteq (L \cup R) \cap X. \\[0.7ex]\end
    Formulas for f(L) =

    It follows from the above formulas for the image of a set subtraction that for any function

    f:X\toY

    and any set

    L,

    \beginf(L)&= Y ~~~\;\, \setminus \left\ \\[0.4ex]&= \operatorname f \setminus \left\ \\[0.4ex]&= W ~~~\, \setminus \left\ \qquad \text \quad W \supseteq f(L) \\[0.7ex]\end

    This is more easily seen as being a consequence of the fact that for any

    y\inY,

    f-1(y)\capL=\varnothing

    if and only if

    y\not\inf(L).

    Formulas for f(L⋂R) =

    It follows from the above formulas for the image of a set that for any function

    f:X\toY

    and any sets

    L

    and

    R,

    \beginf(L \cap R)&= Y~~~~~ \setminus \left\ && \\[0.4ex]&= f(L) \setminus \left\ && \\[0.4ex]&= f(L) \setminus \left\ \qquad && \text \quad U \supseteq f(L) \\[0.4ex]&= f(R) \setminus \left\ && \\[0.4ex]&= f(R) \setminus \left\ \qquad && \text \quad V \supseteq f(R) \\[0.4ex]&= f(L) \cap f(R) \setminus \left\ && \\[0.7ex]\endwhere moreover, for any

    y\inY,

    L\capf-1(y)\subseteqL\setminusR~

    if and only if

    ~L\capR\capf-1(y)=\varnothing~

    if and only if

    ~R\capf-1(y)\subseteqR\setminusL~

    if and only if

    ~y\not\inf(L\capR).

    The sets

    U

    and

    V

    mentioned above could, in particular, be any of the sets

    f(L\cupR),\operatorname{Im}f,

    or

    Y,

    for example.

    (Pre)Images of set operations on (pre)images

    Let

    L

    and

    R

    be arbitrary sets,

    f:X\toY

    be any map, and let

    A\subseteqX

    and

    C\subseteqY.

    Image of preimagePreimage of imageAdditional assumptions on sets

    f\left(f-1(L)\capR\right)=L\capf(R)

    f-1(f(L)\capR)~\supseteq~L\capf-1(R)

    None

    f\left(f-1(L)\cupR\right)~=~(L\cap\operatorname{Im}f)\cupf(R)~\subseteq~L\cupf(R)

    f-1(f(A)\cupR)~\supseteq~A\cupf-1(R)

    [12]
    Equality holds if any of the following are true:
    1. f(A)\subseteqR.

    2. A\subseteqf-1(R).

    A\subseteqX

    (Pre)Images of operations on images

    Since

    f(L)\setminusf(L\setminusR)~=~\left\{y\inf(L\capR)~:~L\capf-1(y)\subseteqR\right\},

    \beginf^(f(L) \setminus f(L \setminus R)) &=&& f^\left(\left\\right) \\&=&& \left\ \\\end

    Since

    f(X)\setminusf(L\setminusR)~=~\left\{y\inf(X)~:~L\capf-1(y)\subseteqR\right\},

    \beginf^(Y \setminus f(L \setminus R)) &~=~&& f^(f(X) \setminus f(L \setminus R)) \\&=&& f^\left(\left\\right) \\&=&& \left\ \\&~=~&& X \setminus f^(f(L \setminus R)) \\\end

    Using

    L:=X,

    this becomes

    ~f(X)\setminusf(X\setminusR)~=~\left\{y\inf(R)~:~f-1(y)\subseteqR\right\}~

    and\beginf^(Y \setminus f(X \setminus R)) &~=~&& f^(f(X) \setminus f(X \setminus R)) \\&=&& f^\left(\left\\right) \\&=&& \left\ \\&\subseteq&& R \\\endand so\beginf^(Y \setminus f(L)) &~=~&& f^(f(X) \setminus f(L)) \\&=&& f^\left(\left\\right) \\&=&& \ \\&=&& X \setminus f^(f(L)) \\&\subseteq&& X \setminus L \\\end

    (Pre)Images and Cartesian products Π

    Let

    \prodY\bull~\stackrel{\scriptscriptstyledef

    }~ \prod_ Y_j and for every

    k\inJ,

    let \pi_k ~:~ \prod_ Y_j ~\to~ Y_k denote the canonical projection onto

    Yk.

    Definitions

    Given a collection of maps

    Fj:X\toYj

    indexed by

    j\inJ,

    define the map\begin\left(F_j\right)_ :\;&& X &&\;\to\; & \prod_ Y_j \\[0.3ex] && x &&\;\mapsto\;& \left(F_j\left(x_j\right)\right)_, \\\endwhich is also denoted by

    F\bull=\left(Fj\right)j.

    This is the unique map satisfying \pi_j \circ F_ = F_j \quad \text j \in J.

    Conversely, if given a map F ~:~ X ~\to~ \prod_ Y_j then

    F=\left(\pij\circF\right)j.

    Explicitly, what this means is that if F_k ~\stackrel~ \pi_k \circ F ~:~ X ~\to~ Y_k is defined for every

    k\inJ,

    then

    F

    the unique map satisfying:

    \pij\circF=Fj

    for all

    j\inJ;

    or said more briefly,

    F=\left(Fj\right)j.

    The map

    F\bull=\left(Fj\right)j~:~X~\to~\prodjYj

    should not be confused with the Cartesian product

    \prodjFj

    of these maps, which is by definition is the map \begin\prod_ F_j :\;&& \prod_ X &&~\;\to\;~ & \prod_ Y_j \\[0.3ex] && \left(x_j\right)_ &&~\;\mapsto\;~& \left(F_j\left(x_j\right)\right)_ \\\endwith domain

    \prodjX=XJ

    rather than

    X.

    Preimage and images of a Cartesian product

    Suppose

    F\bull=\left(Fj\right)j~:~X~\to~\prodjYj.

    If

    A~\subseteq~X

    thenF_(A) ~~\;\color\color\;~~ \prod_ F_j(A).

    If

    B~\subseteq~\prodjYj

    then F_^(B) ~~\;\color\color\;~~ \bigcap_ F_j^\left(\pi_j(B)\right) where equality will hold if

    B=\prodj\pij(B),

    in which case F_^(B) = \displaystyle\bigcap_ F_j^\left(\pi_j(B)\right) and

    For equality to hold, it suffices for there to exist a family

    \left(Bj\right)j

    of subsets

    Bj\subseteqYj

    such that

    B=\prodjBj,

    in which case: and

    \pij(B)=Bj

    for all

    j\inJ.

    (Pre)Image of a single set

    ImagePreimageAdditional assumptions

    \begin{alignat}{4} f(L)&=f(L\cap\operatorname{domain}f)\\ &=f(L\capX)\\ &=Y~~~~\setminus\left\{y\inY~~~~:f-1(y)\subseteqX\setminusL\right\}\\ &=\operatorname{Im}f\setminus\left\{y\in\operatorname{Im}f:f-1(y)\subseteqX\setminusL\right\}\\ \end{alignat}

    \begin{alignat}{4} f-1(L)&=f-1(L\cap\operatorname{Im}f)\\ &=f-1(L\capY) \end{alignat}

    None

    f(X)=\operatorname{Im}f\subseteqY

    \begin{alignat}{4} f-1(Y)&=X\\ f-1(\operatorname{Im}f)&=X \end{alignat}

    None

    \begin{alignat}{4} f(L)&=f(L\capR~&&\cup~&&(&&L\setminusR))\\ &=f(L\capR)~&&\cup~f&&(&&L\setminusR) \end{alignat}

    \begin{alignat}{4} f-1(L)&=f-1(L\capR&&\cup&&(&&L&&\setminus&&R))\\ &=f-1(L\capR)&&\cupf-1&&(&&L&&\setminus&&R)\\ &=f-1(L\capR)&&\cupf-1&&(&&L&&\setminus[&&R\cap\operatorname{Im}f])\\ &=f-1(L\capR)&&\cupf-1&&([&&L\cap\operatorname{Im}f]&&\setminus&&R)\\ &=f-1(L\capR)&&\cupf-1&&([&&L\cap\operatorname{Im}f]&&\setminus[&&R\cap\operatorname{Im}f])\end{alignat}

    None

    \operatorname{Im}f=f(X)~=~f(L)\cupf(X\setminusL)

    \begin{alignat}{4} X&=f-1(L)\cupf-1(Y&&\setminusL)\\ &=f-1(L)\cupf-1(\operatorname{Im}f&&\setminusL) \end{alignat}

    None

    f\vertL(R)=f(L\capR)

    -1
    \left(f\vert
    L\right)

    (R)=L\capf-1(R)

    None

    (g\circf)(L)~=~g(f(L))

    (g\circf)-1(L)~=~f-1\left(g-1(L)\right)

    None (

    f

    and

    g

    are arbitrary functions).

    f\left(f-1(L)\right)=L\cap\operatorname{Im}f


    f-1(f(L))~\supseteq~L\capf-1(\operatorname{Im}f)=L\capf-1(Y)

    None

    f\left(f-1(Y)\right)=f\left(f-1(\operatorname{Im}f)\right)=f(X)

    f-1(f(X))=f-1(\operatorname{Im}f)=X

    None

    f\left(f-1(f(L))\right)=f(L)

    f-1\left(f\left(f-1(L)\right)\right)=f-1(L)

    None

    Containments ⊆ and intersections ⋂ of images and preimages

    Equivalences and implications of images and preimages

    ImagePreimageAdditional assumptions on sets

    f(L)\subseteq\operatorname{Im}f\subseteqY

    f-1(L)=X

    if and only if

    \operatorname{Im}f\subseteqL

    None

    f(L)=\varnothing

    if and only if

    L\cap\operatorname{domain}f=\varnothing

    f-1(L)=\varnothing

    if and only if

    L\cap\operatorname{Im}f=\varnothing

    None

    f(A)=\varnothing

    if and only if

    A=\varnothing

    f-1(C)=\varnothing

    if and only if

    C\subseteqY\setminus\operatorname{Im}f

    A\subseteqX

    and

    C\subseteqY

    L\subseteqR

    implies

    f(L)\subseteqf(R)

    L\subseteqR

    implies

    f-1(L)\subseteqf-1(R)

    None
    The following are equivalent:
    1. f(L)\subseteqf(R)

    2. f(L\cupR)=f(R)

    3. L\cap\operatorname{domain}f~\subseteq~f-1(f(R))

    The following are equivalent:
    1. f-1(L)\subseteqf-1(R)

    2. f-1(L\cupR)=f-1(R)

    3. L\cap\operatorname{Im}f\subseteqR

    If

    C~\subseteq~\operatorname{Im}f

    then

    f-1(C)~\subseteq~f-1(R)

    if and only if

    C~\subseteq~R.

    C\subseteq\operatorname{Im}f

    The following are equivalent when

    C\subseteqY:

    1. C\subseteqf(R)

    2. f(B)=C

      for some

      B\subseteqR

    The following are equivalent:
    1. L\subseteqf-1(R)

    2. f(L)\subseteqR

      and

      L\subseteq\operatorname{domain}f

    The following are equivalent when

    A\subseteqX:

    1. A\subseteqf-1(R)

    2. f(A)\subseteqR

    A\subseteqX

    and

    C\subseteqY

    The following are equivalent:
    1. f(A)~\supseteq~f(X\setminusA)

    2. f(A)=\operatorname{Im}f

    The following are equivalent:
    1. f-1(C)~\supseteq~f-1(Y\setminusC)

    2. f-1(C)=X

    A\subseteqX

    and

    C\subseteqY

    f\left(f-1(L)\right)\subseteqL


    Equality holds if the following is true:
    1. L\subseteq\operatorname{Im}f.

      [13] [14]
    Equality holds if any of the following are true:
    1. L\subseteqY

      and

      f:X\toY

      is surjective.

    f-1(f(A))\supseteqA


    Equality holds if the following is true:
    1. A

      is

      f

      -saturated.
    Equality holds if any of the following are true:
    1. f

      is injective.

    A\subseteqX

    Intersection of a set and a (pre)image

    The following statements are equivalent:

    1. \varnothing=f(L)\capR

    2. \varnothing=L\capf-1(R)

    3. \varnothing=f-1(f(L))\capf-1(R)

    4. \varnothing=f-1(f(L)\capR)

    Thus for any

    t,

    t \not\in f(L) \quad \text \quad L \cap f^(t) = \varnothing.

    Sequences and collections of families of sets

    Definitions

    A or simply a is a set whose elements are sets. A is a family of subsets of

    X.

    The of a set

    X

    is the set of all subsets of

    X

    : \wp(X) ~\colon=~ \.

    Notation for sequences of sets

    Throughout,

    SandT

    will be arbitrary sets and

    S\bull

    and will denote a net or a sequence of sets where if it is a sequence then this will be indicated by either of the notations S_ = \left(S_i\right)_^ \qquad \text \qquad S_ = \left(S_i\right)_where

    \N

    denotes the natural numbers. A notation

    S\bull=\left(Si\right)i

    indicates that

    S\bull

    is a net directed by

    (I,\leq),

    which (by definition) is a sequence if the set

    I,

    which is called the net's indexing set, is the natural numbers (that is, if

    I=\N

    ) and

    \leq

    is the natural order on

    \N.

    Disjoint and monotone sequences of sets

    If

    Si\capSj=\varnothing

    for all distinct indices

    ij

    then

    S\bull

    is called a or simply a . A sequence or net

    S\bull

    of set is called or if (resp. or) if for all indices

    i\leqj,

    Si\subseteqSj

    (resp.

    Si\supseteqSj

    ). A sequence or net

    S\bull

    of set is called (resp.) if it is non-decreasing (resp. is non-increasing) and also

    SiSj

    for all indices

    iandj.

    It is called if it is non-decreasing or non-increasing and it is called if it is strictly increasing or strictly decreasing.

    A sequences or net

    S\bull

    is said to denoted by

    S\bull\uparrowS

    or

    S\bull\nearrowS,

    if

    S\bull

    is increasing and the union of all

    Si

    is

    S;

    that is, if \bigcup_ S_n = S \qquad \text \qquad S_i \subseteq S_j \quad \text i \leq j.It is said to denoted by

    S\bull\downarrowS

    or

    S\bull\searrowS,

    if

    S\bull

    is increasing and the intersection of all

    Si

    is

    S

    that is, if \bigcap_ S_n = S \qquad \text \qquad S_i \supseteq S_j \quad \text i \leq j.

    Definitions of elementwise operations on families

    If

    l{L}andl{R}

    are families of sets and if

    S

    is any set then define: \mathcal \;(\cup)\; \mathcal ~\colon=~ \\mathcal \;(\cap)\; \mathcal ~\colon=~ \\mathcal \;(\setminus)\; \mathcal ~\colon=~ \\mathcal \;(\triangle)\; \mathcal ~\colon=~ \\mathcal\big\vert_S ~\colon=~ \ = \mathcal \;(\cap)\; \which are respectively called , , () , , and the / The regular union, intersection, and set difference are all defined as usual and are denoted with their usual notation:

    l{L}\cupl{R},l{L}\capl{R},l{L}\trianglel{R},

    and

    l{L}\setminusl{R},

    respectively. These elementwise operations on families of sets play an important role in, among other subjects, the theory of filters and prefilters on sets.

    The of a family

    l{L}\subseteq\wp(X)

    is the family: \mathcal^ ~\colon=~ \bigcup_ \ ~=~ \ and the is the family:\mathcal^ ~\colon=~ \bigcup_ \wp(L) ~=~ \.

    Definitions of categories of families of sets

    The following table lists some well-known categories of families of sets having applications in general topology and measure theory.

    A family

    l{L}

    is called,, or in

    X

    if

    l{L}\subseteq\wp(X)

    and

    l{L}=l{L}\uparrow.

    A family

    l{L}

    is called if

    l{L}=l{L}\downarrow.

    A family

    l{L}

    is said to be:

    L,R\inl{L}

    then

    L\capR\inl{L}

    (respectively,

    L\cupR\inl{L}

    ).

    L1,L2,L3,\ldots

    are elements of

    l{L}

    then so is their intersections
    infty
    cap
    i=1

    Li:=L1\capL2\capL3\cap

    (resp. so is their union
    infty
    cup
    i=1

    Li:=L1\cupL2\cupL3\cup

    ).

    L\inl{L}

    then

    X\setminusL\inl{L}.

    A family

    l{L}

    of sets is called a/an:

    l{L}\varnothing

    and

    l{L}

    is closed under finite-intersections.

    l{L}

    is contained in a unique smallest (with respect to

    \subseteq

    ) −system that is denoted by

    \pi(l{L})

    and called

    l{L}\varnothing

    and

    \varnothing\not\in\pi(l{L}).

    l{L}\varnothing

    is a family of subsets of

    X

    that is a −system, is upward closed in

    X,

    and is also, which by definition means that it does not contain the empty set as an element.

    X

    whose upward closure in

    X

    is a filter on

    X.

    X

    that contains the empty set, forms a −system, and is also closed under complementation with respect to

    X.

    X

    that is closed under countable unions (or equivalently, closed under countable intersections).

    Sequences of sets often arise in measure theory.

    Algebra of sets

    See also: Algebra of sets.

    \Phi

    of subsets of a set

    X

    is said to be if

    \varnothing\in\Phi

    and for all

    L,R\in\Phi,

    all three of the sets

    X\setminusR,L\capR,

    and

    L\cupR

    are elements of

    \Phi.

    [15] The article on this topic lists set identities and other relationships these three operations.

    Every algebra of sets is also a ring of sets[15] and a π-system.

    Algebra generated by a family of sets

    Given any family

    l{S}

    of subsets of

    X,

    there is a unique smallest[16] algebra of sets in

    X

    containing

    l{S}.

    [15] It is called and it will be denote it by

    \Phil{S

    }. This algebra can be constructed as follows:[15]

    1. If

      l{S}=\varnothing

      then

      \Phil{S

      } = \ and we are done. Alternatively, if

      l{S}

      is empty then

      l{S}

      may be replaced with

      \{\varnothing\},\{X\},or\{\varnothing,X\}

      and continue with the construction.
    2. Let

      l{S}0

      be the family of all sets in

      l{S}

      together with their complements (taken in

      X

      ).
    3. Let

      l{S}1

      be the family of all possible finite intersections of sets in

      l{S}0.

      [17]
    4. Then the algebra generated by

      l{S}

      is the set

      \Phil{S

      } consisting of all possible finite unions of sets in

      l{S}1.

    Elementwise operations on families

    Let

    l{L},l{M},

    and

    l{R}

    be families of sets over

    X.

    On the left hand sides of the following identities,

    l{L}

    is the eft most family,

    l{M}

    is in the iddle, and

    l{R}

    is the ight most set.

    Commutativity

    \mathcal \;(\cup)\; \mathcal = \mathcal \;(\cup)\; \mathcal\mathcal \;(\cap)\; \mathcal = \mathcal \;(\cap)\; \mathcal

    Associativity

    [\mathcal{L} \;(\cup)\; \mathcal{M}] \;(\cup)\; \mathcal = \mathcal \;(\cup)\; [\mathcal{M} \;(\cup)\; \mathcal{R}][\mathcal{L} \;(\cap)\; \mathcal{M}] \;(\cap)\; \mathcal = \mathcal \;(\cap)\; [\mathcal{M} \;(\cap)\; \mathcal{R}]

    Identity:\mathcal \;(\cup)\; \ = \mathcal\mathcal \;(\cap)\; \ = \mathcal\mathcal \;(\setminus)\; \ = \mathcal

    Domination:\mathcal \;(\cup)\; \ = \ ~~~~\text \mathcal \neq \varnothing\mathcal \;(\cap)\; \ = \ ~~~~\text \mathcal \neq \varnothing\mathcal \;(\cup)\; \varnothing = \varnothing\mathcal \;(\cap)\; \varnothing = \varnothing\mathcal \;(\setminus)\; \varnothing = \varnothing\varnothing \;(\setminus)\; \mathcal = \varnothing

    Power set

    \wp(L \cap R) ~=~ \wp(L) \cap \wp(R)\wp(L \cup R) ~=~ \wp(L) \ (\cup)\ \wp(R) ~\supseteq~ \wp(L) \cup \wp(R).

    If

    L

    and

    R

    are subsets of a vector space

    X

    and if

    s

    is a scalar then\wp(s L) ~=~ s \wp(L)\wp(L + R) ~\supseteq~ \wp(L) + \wp(R).

    Sequences of sets

    Suppose that

    L

    is any set such that

    L\supseteqRi

    for every index

    i.

    If

    R\bull

    decreases to

    R

    then

    L\setminusR\bull:=\left(L\setminusRi\right)i

    increases to

    L\setminusR

    whereas if instead

    R\bull

    increases to

    R

    then

    L\setminusR\bull

    decreases to

    L\setminusR.

    If

    LandR

    are arbitrary sets and if

    L\bull=\left(Li\right)i

    increases (resp. decreases) to

    L

    then

    \left(Li\setminusR\right)i

    increase (resp. decreases) to

    L\setminusR.

    Partitions

    Suppose that

    S\bull=\left(Si\right)

    infty
    i=1
    is any sequence of sets, that

    S\subseteqcupiSi

    is any subset, and for every index

    i,

    let

    Di=\left(Si\capS\right)\setminus

    i
    cup
    m=1

    \left(Sm\capS\right).

    Then

    S=cupiDi

    and

    D\bull:=\left(Di\right)

    infty
    i=1
    is a sequence of pairwise disjoint sets.

    Suppose that

    S\bull=\left(Si\right)

    infty
    i=1
    is non-decreasing, let

    S0=\varnothing,

    and let

    Di=Si\setminusSi-1

    for every

    i=1,2,\ldots.

    Then

    cupiSi=cupiDi

    and

    D\bull=\left(Di\right)

    infty
    i=1
    is a sequence of pairwise disjoint sets.

    Notes

    Notes

    Proofs

    References

    External links

    Notes and References

    1. For example, the expression

      (M\setminusR)\setminusA

      uses two of the same symbols (

      M

      and

      R

      ) that appear in the identity (L \,\setminus\, M) \,\setminus\, R ~=~ (L \,\setminus\, R) \,\setminus\, (M \,\setminus\, R)but they refer to different sets in each expression. To apply this identity to

      (M\setminusR)\setminusA,

      substitute

      Leftset:=M,

      Middleset:=R,

      and

      Rightset:=A

      (since these are the left, middle, and right sets in

      (M\setminusR)\setminusA

      ) to obtain: \begin(M \setminus R) \setminus A &= (\text &&\setminus \text&&) &&\setminus (\text &&\setminus \text) \\&= (M &&\setminus A&&) &&\setminus (R &&\setminus A). \\\endFor a second example, this time applying the identity to

      ((M\capR\setminusL)\setminus(A\triangleL))\setminusL,

      is now given. The identity (L \setminus M) \setminus R = (L \setminus R) \setminus (M \setminus R) can be applied to

      ((M\capR\setminusL)\setminus(A\triangleL))\setminusL

      by reading

      L,M,

      and

      R

      as

      Left,Middle,

      and

      Right

      and then substituting

      Left=(M\capR\setminusL),

      Middle=(A\triangleL),

      and

      Right=L

      to obtain:\begin((M \cap R \setminus L) \setminus (A \triangle L)) \setminus L &= (\text &&\setminus \text&&) &&\setminus (\text &&\setminus \text) \\&= ((M \cap R \setminus L) &&\setminus L&&) &&\setminus ((A \triangle L) &&\setminus L). \\\end
    2. Web site: Taylor. Courtney. March 31, 2019. What Is Symmetric Difference in Math?. 2020-09-05. ThoughtCo. en.
    3. Web site: Weisstein. Eric W.. Symmetric Difference. 2020-09-05. mathworld.wolfram.com. en.
    4. To deduce from, it must still be shown that

      {stylecup\limits\stackrel{i{j\inI}}}\left(Li\cupRj\right)~=~{stylecup\limitsi

      } \left(L_i \cup R_i\right) so is not a completely immediate consequence of . (Compare this to the commentary about).
    5. So for instance, it's even possible that

      L\cap(X\cupY)=\varnothing,

      or that

      L\capX\varnothing

      L\capY\varnothing

      (which happens, for instance, if

      X=Y

      ), etc.
    6. The conclusion

      X\setminusf-1(R)=f-1(Y\setminusR)

      can also be written as:

      f-1(R)\complement~=~f-1\left(R\complement\right).

    7. Whether or not it is even feasible for the function

      f

      to be constant and the sets

      L\triangleR

      and

      R

      to be non-empty and disjoint is irrelevant for reaching the correct conclusion about whether to use

      \subseteqor\supseteq.

    8. See
    9. Note that this condition depends entirely on

      R

      and on

      L.

    10. Let

      P:=\left\{y\inY:L\capf-1(y)\subseteqR\right\}

      and let

      (\star)

      denote the set equality

      f(L\setminusR)=Y\setminusP,

      which will now be proven. If

      y\inY\setminusP

      then

      L\capf-1(y)\not\subseteqR

      so there exists some

      x\inL\capf-1(y)\setminusR;

      now

      f-1(y)\subseteqX

      implies

      x\inL\capX\setminusR

      so that

      y=f(x)\inf(L\capX\setminusR)=f(L\setminusR).

      To prove the reverse inclusion

      f(L\setminusR)\subseteqY\setminusP,

      let

      y\inf(L\setminusR)

      so that there exists some

      x\inX\capL\setminusR

      such that

      y=f(x).

      Then

      x\inL\capf-1(y)\setminusR

      so that

      L\capf-1(y)\not\subseteqR

      and thus

      y\not\inP,

      which proves that

      y\inY\setminusP,

      as desired.

      \blacksquare

      Defining

      Q:=f(L)\capP=\left\{y\inf(L):L\capf-1(y)\subseteqR\right\},

      the identity

      f(L\setminusR)=f(L)\setminusQ

      follows from

      (\star)

      and the inclusions

      f(L\setminusR)\subseteqf(L)\subseteqY.

      \blacksquare

    11. Let

      fR:=\left\{y\inf(L):L\capf-1(y)\subseteqR\right\}

      where because

      fR\subseteqf(R\capL),

      fR

      is also equal to

      fR=\left\{y\inf(R\capL):L\capf-1(y)\subseteqR\right\}.

      As proved above,

      f(L\setminusR)=f(L)\setminusfR

      so that

      f(L)\setminusf(R)=f(L\setminusR)

      if and only if

      f(L)\setminusf(R)=f(L)\setminusfR.

      Since

      f(L)\setminusf(R)=f(L)\setminus(f(L)\capf(R)),

      this happens if and only if

      f(L)\setminus(f(L)\capf(R))=f(L)\setminusfR.

      Because

      f(L)\capf(R)andfR

      are both subsets of

      f(L),

      the condition on the right hand side happens if and only if

      f(L)\capf(R)=fR.

      Because

      fR\subseteqf(R\capL)\subseteqf(L)\capf(R),

      the equality

      f(L)\capf(R)=fR

      holds if and only if

      f(L)\capf(R)\subseteqfR.

      \blacksquare

      If

      f(R)\subseteqf(L)

      (such as when

      L=X

      or

      R\subseteqL

      ) then

      f(L)\capf(R)\subseteqfR

      if and only if

      f(R)\subseteqfR.

      In particular, taking

      L=X

      proves:

      f(X\setminusR)=f(X)\setminusf(R)

      if and only if

      f(R)\subseteq\left\{y\inf(R\capX):f-1(y)\subseteqR\right\},

      where

      f(R\capX)=f(R).

      \blacksquare

    12. Lee p.388 of Lee, John M. (2010). Introduction to Topological Manifolds, 2nd Ed.
    13. Lee
    14. Lee
    15. Web site: Algebra of sets. Encyclopediaofmath.org. 16 August 2013. 8 November 2020.
    16. Here "smallest" means relative to subset containment. So if

      \Phi

      is any algebra of sets containing

      l{S},

      then

      \Phil{S

      } \subseteq \Phi.
    17. Since

      l{S}\varnothing,

      there is some

      S\inl{S}0

      such that its complement also belongs to

      l{S}0.

      The intersection of these two sets implies that

      \varnothing\inl{S}1.

      The union of these two sets is equal to

      X,

      which implies that

      X\in\Phil{S

      }.