List of prime numbers explained

This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite.

The first 1000 prime numbers

The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.[1]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1–2071
21–40101113173
41–60229281
61–80349409
81–100463541
101–120601647659
121–140733809
141–160863941
161–18010131069
181–20011511223
201–22012911373
221–24014511511
241–26015831657
261–28017331811
281–30018891987
301–32020532129
321–34022132287
341–36023572423
361–38025312617
381–40026872741
401–42028192903
421–44029993079
441–46031813257
461–48033313413
481–500345735113571
501–5203727
521–5403907
541–5604057
561–5804231
581–6004409
601–6204583
621–6404751
641–6604937
661–6805087
681–7005279
701–7205443
721–7405639
741–7605791
761–7805939
781–8006133
801–8206301
821–8406473
841–8606673
861–8806833
881–9006997
901–9207207
921–9407411
941–9607561
961–9807723
981–10007919

.

The Goldbach conjecture verification project reports that it has computed all primes smaller than 4×10.[2] That means 95,676,260,903,887,607 primes (nearly 10), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2) smaller than 10. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2) smaller than 10, if the Riemann hypothesis is true.[3]

Lists of primes by type

Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions.

Balanced primes

Primes with equal-sized prime gaps after and before them, so that they are equal to the arithmetic mean of the nearest primes after and before.

Bell primes

Primes that are the number of partitions of a set with n members.

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837.The next term has 6,539 digits.

Where p is prime and p+2 is either a prime or semiprime.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409

Circular primes

A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331

Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence):

2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111

All repunit primes are circular.

A cluster prime is a prime p such that every even natural number kp − 3 is the difference of two primes not exceeding p.

3, 5, 7, 11, 13, 17, 19, 23, ...

All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are:

2, 97, 127, 149, 191, 211, 223, 227, 229, 251.

Where (p, p + 4) are both prime.

(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281)

Cuban primes

Of the form

\tfrac{x3-y3}{x-y}

where x = y + 1.

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317

Of the form

\tfrac{x3-y3}{x-y}

where x = y + 2.

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249

Of the form n×2 + 1.

3, 393050634124102232869567034555427371542904833

Delicate primes

Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number.

294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139

Dihedral primes

Primes that remain prime when read upside down or mirrored in a seven-segment display.

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121,121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081

Eisenstein primes without imaginary part

Eisenstein integers that are irreducible and real numbers (primes of the form 3n − 1).

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401

Primes that become a different prime when their decimal digits are reversed. The name "emirp" is the reverse of the word "prime".

13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991

Of the form p# + 1 (a subset of primorial primes).

3, 7, 31, 211, 2311, 200560490131 ([4])

A prime

p

that divides Euler number

E2n

for some

0\leq2n\leqp-3

.

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587

Primes

p

such that

(p,p-3)

is an Euler irregular pair.

149, 241, 2946901

Factorial primes

Of the form n! − 1 or n! + 1.

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999

Fermat primes

Of the form 2 + 1.

3, 5, 17, 257, 65537

these are the only known Fermat primes, and conjecturally the only Fermat primes. The probability of the existence of another Fermat prime is less than one in a billion.[5]

Of the form a + 1 for fixed integer a.

a = 2: 3, 5, 17, 257, 65537

a = 4: 5, 17, 257, 65537

a = 6: 7, 37, 1297

a = 8: (does not exist)

a = 10: 11, 101

a = 12: 13

a = 14: 197

a = 16: 17, 257, 65537

a = 18: 19

a = 20: 401, 160001

a = 22: 23

a = 24: 577, 331777

Fibonacci primes

Primes in the Fibonacci sequence F = 0, F = 1,F = F + F.

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917

Fortunate numbers that are prime (it has been conjectured they all are).

3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397

Gaussian primes

Prime elements of the Gaussian integers; equivalently, primes of the form 4n + 3.

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503

Good primes

Primes p for which p > p p for all 1 ≤ i ≤ n−1, where p is the nth prime.

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307

Happy primes

Happy numbers that are prime.

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093

Harmonic primes

Primes p for which there are no solutions to H ≡ 0 (mod p) and H ≡ −ω (mod p) for 1 ≤ k ≤ p−2, where H denotes the k-th harmonic number and ω denotes the Wolstenholme quotient.[6]

5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349

Higgs primes for squares

Primes p for which p − 1 divides the square of the product of all earlier terms.

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349

Primes that are a cototient more often than any integer below it except 1.

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889

Home primes

For, write the prime factorization of in base 10 and concatenate the factors; iterate until a prime is reached.

2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277

Irregular primes

Odd primes p that divide the class number of the p-th cyclotomic field.

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613

(See Wolstenholme prime)

Primes p such that (p, p−5) is an irregular pair.[7]

37

Primes p such that (p, p − 9) is an irregular pair.

67, 877

Isolated primes

Primes p such that neither p − 2 nor p + 2 is prime.

2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997

Of the form x + y, with 1 < x < y.

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193

Primes p for which, in a given base b,

bp-1-1
p
gives a cyclic number. They are also called full reptend primes. Primes p for base 10:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593

Lucas primes

Primes in the Lucas number sequence L = 2, L = 1,L = L + L.

2,[8] 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149

Lucky numbers that are prime.

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997

Mersenne primes

Of the form 2 − 1.

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727

, there are 52 known Mersenne primes. The 13th, 14th, and 52nd have respectively 157, 183, and 41,024,320 digits. This includes the largest known prime 2136,279,841-1, which is the 52nd Mersenne prime.

Mersenne divisors

Primes p that divide 2 − 1, for some prime number n.

3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343

All Mersenne primes are, by definition, members of this sequence.

Mersenne prime exponents

Primes p such that 2 − 1 is prime.

2, 3, 5, 7, 13, 17, 19, 31, 61, 89,107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423,9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161

, four more are known to be in the sequence, but it is not known whether they are the next:
74207281, 77232917, 82589933, 136279841

Double Mersenne primes

A subset of Mersenne primes of the form 2 − 1 for prime p.

7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in)

Of the form (a − 1) / (a − 1) for fixed integer a.

For a = 2, these are the Mersenne primes, while for a = 10 they are the repunit primes. For other small a, they are given below:

a = 3: 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013

a = 4: 5 (the only prime for a = 4)

a = 5: 31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531

a = 6: 7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371

a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457

a = 8: 73 (the only prime for a = 8)

a = 9: none exist

Other generalizations and variations

Many generalizations of Mersenne primes have been defined. This include the following:

Of the form ⌊θ⌋, where θ is Mills' constant. This form is prime for all positive integers n.

2, 11, 1361, 2521008887, 16022236204009818131831320183

Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049

Newman–Shanks–Williams primes

Newman–Shanks–Williams numbers that are prime.

7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599

Non-generous primes

Primes p for which the least positive primitive root is not a primitive root of p2. Three such primes are known; it is not known whether there are more.[9]

2, 40487, 6692367337

Primes that remain the same when their decimal digits are read backwards.

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741

Palindromic wing primes

Primes of the form

a(10m-1)
9

\pmb x

m-1
2
10
with

0\lea\pmb<10

.[10] This means all digits except the middle digit are equal.

101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999

Partition function values that are prime.

2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557

Primes in the Pell number sequence P = 0, P = 1,P = 2P + P.

2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449

Permutable primes

Any permutation of the decimal digits is a prime.

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111

Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2,P(n) = P(n−2) + P(n−3).

2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797

Pierpont primes

Of the form 23 + 1 for some integers u,v ≥ 0.

These are also class 1- primes.

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457

Pillai primes

Primes p for which there exist n > 0 such that p divides n! + 1 and n does not divide p − 1.

23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499

Primes of the form n4 + 1

Of the form n4 + 1.[11] [12]

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001

Primeval primes

Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.

2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079

Primorial primes

Of the form p# ± 1.

3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of and [4])

Of the form k×2 + 1, with odd k and k < 2.

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857

Pythagorean primes

Of the form 4n + 1.

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449

Where (p, p+2, p+6, p+8) are all prime.

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439)

Quartan primes

Of the form x + y, where x,y > 0.

2, 17, 97, 257, 337, 641, 881

Ramanujan primes

Integers R that are the smallest to give at least n primes from x/2 to x for all x ≥ R (all such integers are primes).

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491

Regular primes

Primes p that do not divide the class number of the p-th cyclotomic field.

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281

Primes containing only the decimal digit 1.

11, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits)

The next have 317, 1031, 49081, 86453, 109297, 270343 digits

Of the form an + d for fixed integers a and d. Also called primes congruent to d modulo a.

The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359
12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349
12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269
12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271
12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263

Safe primes

Where p and (p−1) / 2 are both prime.

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907

Self primes in base 10

Primes that cannot be generated by any integer added to the sum of its decimal digits.

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873

Sexy primes

Where (p, p + 6) are both prime.

(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199)

Primes that are the concatenation of the first n primes written in decimal.

2, 23, 2357

The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719.

Solinas primes

Of the form 2 ± 2 ± 1, where 0 < b < a.

3, 5, 7, 11, 13

Sophie Germain primes

Where p and 2p + 1 are both prime. A Sophie Germain prime has a corresponding safe prime.

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953

Stern primes

Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.

2, 3, 17, 137, 227, 977, 1187, 1493

, these are the only known Stern primes, and possibly the only existing.

Super-primes

Primes with prime-numbered indexes in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991

There are exactly fifteen supersingular primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71

Thabit primes

Of the form 3×2 − 1.

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407

The primes of the form 3×2 + 1 are related.

7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657

Where (p, p+2, p+6) or (p, p+4, p+6) are all prime.

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353)

Left-truncatable

Primes that remain prime when the leading decimal digit is successively removed.

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683

Right-truncatable

Primes that remain prime when the least significant decimal digit is successively removed.

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797

Two-sided

Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:

2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397

Twin primes

Where (p, p+2) are both prime.

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463)

Unique primes

The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period).

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991

Wagstaff primes

Of the form (2 + 1) / 3.

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243

Values of n:

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321

Wall–Sun–Sun primes

F
p-
\left({p

{{5}}\right)}

, where the Legendre symbol
\left({p
}\right) is defined as
\left(p
5

\right)=\begin{cases}1&rm{if} p\equiv\pm1\pmod5\ -1&rm{if} p\equiv\pm2\pmod5.\end{cases}

, no Wall-Sun-Sun primes are known.

Wieferich primes

Primes p such that for fixed integer a > 1.

2p − 1 ≡ 1 (mod p2): 1093, 3511
3p − 1 ≡ 1 (mod p2): 11, 1006003 [13] [14] [15]
4p − 1 ≡ 1 (mod p2): 1093, 3511
5p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
6p − 1 ≡ 1 (mod p2): 66161, 534851, 3152573
7p − 1 ≡ 1 (mod p2): 5, 491531
8p − 1 ≡ 1 (mod p2): 3, 1093, 3511
9p − 1 ≡ 1 (mod p2): 2, 11, 1006003
10p − 1 ≡ 1 (mod p2): 3, 487, 56598313
11p − 1 ≡ 1 (mod p2): 71[16]
12p − 1 ≡ 1 (mod p2): 2693, 123653
13p − 1 ≡ 1 (mod p2): 2, 863, 1747591
14p − 1 ≡ 1 (mod p2): 29, 353, 7596952219
15p − 1 ≡ 1 (mod p2): 29131, 119327070011
16p − 1 ≡ 1 (mod p2): 1093, 3511
17p − 1 ≡ 1 (mod p2): 2, 3, 46021, 48947
18p − 1 ≡ 1 (mod p2): 5, 7, 37, 331, 33923, 1284043
19p − 1 ≡ 1 (mod p2): 3, 7, 13, 43, 137, 63061489
20p − 1 ≡ 1 (mod p2): 281, 46457, 9377747, 122959073
21p − 1 ≡ 1 (mod p2): 2
22p − 1 ≡ 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159
23p − 1 ≡ 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329
24p − 1 ≡ 1 (mod p2): 5, 25633
25p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801

, these are all known Wieferich primes with a ≤ 25.

Wilson primes

Primes p for which p divides (p−1)! + 1.

5, 13, 563

, these are the only known Wilson primes.

Wolstenholme primes

{{2p-1}\choose{p-1}}\equiv1\pmod{p4}.

16843, 2124679

, these are the only known Wolstenholme primes.

Of the form n×2 − 1.

7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319

External links

Notes and References

  1. Book: Lehmer, D. N. . Derrick Norman Lehmer . List of prime numbers from 1 to 10,006,721 . Carnegie Institution of Washington . 165 . 1982 . Washington D.C. . OL16553580M . 16553580M .
  2. Tomás Oliveira e Silva, Goldbach conjecture verification . Retrieved 16 July 2013
  3. Web site: Conditional Calculation of pi(10). Jens Franke. 29 July 2010. 17 May 2011. live. http://archive.wikiwix.com/cache/20140824032441/http://primes.utm.edu/notes/pi(10%5E24).html. 24 August 2014.
  4. includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.
  5. Boklan. Kent D.. Conway. John H.. 2016. Expect at most one billionth of a new Fermat Prime!. 1605.01371. math.NT.
  6. Boyd . D. W. . A p-adic Study of the Partial Sums of the Harmonic Series . 10.1080/10586458.1994.10504298 . . 3 . 4 . 287–302 . 1994 . CiteSeerX. 0838.11015 . live . https://web.archive.org/web/20160127080246/http://projecteuclid.org/euclid.em/1048515811 . 27 January 2016.
  7. Johnson . W. . Irregular Primes and Cyclotomic Invariants . . 29 . 129 . 113–120 . . 1975 . 10.2307/2005468 . 2005468 . free .
  8. It varies whether L = 2 is included in the Lucas numbers.
  9. Paszkiewicz . Andrzej. A new prime

    p

    for which the least primitive root

    (rm{mod}p)

    and the least primitive root

    (rm{mod}p2)

    are not equal
    . Math. Comp.. 78. 2009. 266. 1193 - 1195. 10.1090/S0025-5718-08-02090-5 . American Mathematical Society. 2009MaCom..78.1193P. free.
  10. Caldwell . C. . Chris Caldwell (mathematician). Dubner . H. . Harvey Dubner . The near repdigit primes

    An-k-1B1Ak

    , especially

    9n-k-1819k

    . . 28 . 1 . 1–9 . 1996–97.
  11. Lal . M. . Primes of the Form n4 + 1 . Mathematics of Computation . 21 . 245–247 . . 1967 . 1088-6842 . 10.1090/S0025-5718-1967-0222007-9 . live . https://web.archive.org/web/20150113214845/http://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf . 13 January 2015. free .
  12. Bohman . J. . New primes of the form n4 + 1 . BIT Numerical Mathematics . 13 . 3 . 370–372 . Springer . 1973 . 1572-9125 . 10.1007/BF01951947. 123070671 .
  13. Book: Ribenboim, P. . Paulo Ribenboim . The new book of prime number records . Springer-Verlag . New York . 347 . 0-387-94457-5. 22 February 1996 .
  14. Web site: Mirimanoff's Congruence: Other Congruences . 26 January 2011.
  15. Gallot . Y. . Moree . P. . Zudilin . W. . The Erdös-Moser equation 1 + 2 +...+ (m−1) = m revisited using continued fractions . Mathematics of Computation . 80 . 1221–1237 . American Mathematical Society . 2011 . 10.1090/S0025-5718-2010-02439-1 . 0907.1356. 16305654 .
  16. Book: Ribenboim, P. . Paulo Ribenboim . Die Welt der Primzahlen . Springer . 2006 . Berlin . 240 . 3-540-34283-4 .