List of linear ordinary differential equations explained

This is a list of named linear ordinary differential equations.

A–Z

NameOrderEquationApplications
Airy2
d2y
dx2

-xy=0

[1]
Optics
Bessel2

x2

d2y
dx2

+x

dy
dx

+\left(x2-\alpha2\right)y=0

Wave propagation
Cauchy-Eulern

anxny(n)(x)+an-1xn-1y(n-1)(x)+...+a0y(x)=0

Chebyshev2

(1-x2)y''-xy'+n2y=0,(1-x2)y''-3xy'+n(n+2)y=0

Orthogonal polynomials
Damped harmonic oscillator2

m

d2x
dt2

+c

dx
dt

+kx=0

Damping
Frenet-Serret1

\dfrac{dT}{ds}=\kappaN, \dfrac{dN}{ds}=-\kappaT+\tauB, \dfrac{dB}{ds}=-\tauN

Differential geometry
General Laguerre2

xy''+(\alpha+1-x)y'+ny=0

Hydrogen atom
General Legendre2

\left(1-x2\right)

d2
dx2
m(x)
P
\ell

-2x

d
dx
m(x)
P
\ell

+\left[\ell(\ell+1)-

m2
1-x2

\right]

m(x)
P
\ell

=0

Harmonic oscillator2

m

d2x
dt2

+kx=0

Simple harmonic motion
Heun2
d2w
dz2

+\left[

\gamma
z

+

\delta
z-1

+

\epsilon
z-a

\right]

dw
dz

+

\alpha\betaz-q
z(z-1)(z-a)

w=0

Hill2
d2y
dt2

+f(t)y=0

, (f periodic)
Physics
Hypergeometric2
z(1-z)d2w
dz2

+\left[c-(a+b+1)z\right]

dw
dz

-abw=0

Kummer2
zd2w
dz2

+(b-z)

dw
dz

-aw=0

Laguerre2

xy''+(1-x)y'+ny=0

Legendre2

(1-x2)Pn''(x)-2xPn'(x)+n(n+1)Pn(x)=0

Orthogonal polynomials
Matrix1
x
(t)

=A(t)x(t)

Picard-Fuchs2
d2y
dj2

+

1
j
dy
dj

+

31j-4
144j2(1-j)2

y=0

Elliptic curves
Riemann2
d2w
dz2

+\left[

1-\alpha-\alpha'+
z-a
1-\beta-\beta'+
z-b
1-\gamma-\gamma'
z-c

\right]

dw
dz

+\left[ \alpha\alpha'(a-b)(a-c)+
z-a
\beta\beta'(b-c)(b-a)+
z-b
\gamma\gamma'(c-a)(c-b)\right]
z-c
w
(z-a)(z-b)(z-c)

=0

Quantum harmonic oscillator2
-1
2
d2\psi
dx2

+

1
2

x2\psi=E\psi

Quantum mechanics
Sturm-Liouville2
d
dx

\

\left[\,p(x)\frac{dy}{dx}\right] + q(x)y = -\lambda\, w(x)y, Applied mathematics

See also

Notes and References

  1. Book: Vallée, Olivier . Airy functions and applications to physics . 2004 . Hackensack, NJ : World Scientific . Internet Archive . 978-1-86094-478-9 . 5.