List of landing ellipses on extraterrestrial bodies explained
This is a list of the projected landing zones on extraterrestrial bodies. The size of the ellipse or oval graphically represents statistical degrees of uncertainty, i.e. the confidence level of the landing point, with the center of the ellipse being calculated as the most likely given the plethora of variables.[1] Their accuracy has improved from the early attempts in the 1960s; active research continues in the 21st century.[2] [3] [4] [5]
Ellipse table
Mission | Country/Agency | Destination | Date of Impact/Landing | Axes | Notes |
---|
Surveyor 1 | NASA | Moon | 1966 | 50 km[6] | Landing error ~18.96 km |
Surveyor 3 | NASA | Moon | 1967 | 15.1 x 10.6 km | Initial landing ellipse was 30 km, was corrected in-flight after midcourse correction. Landing error ~2.76 km |
Apollo 11 | NASA | Moon | 1969 | 18.5 x 4.8 km[7] [8] | First crewed landing. Landing error ~6.6 km |
Apollo 12 | NASA | Moon | 1969 | ~1 km,[9] or 13.3 x 4.8 km[10] | Second crewed landing. Landing error ~160 m Landed in ~200 m from Surveyor 3, its target. Landing was very precise and not intended to be closer. |
Apollo 14 | NASA | Moon | 1971 | ~1 km | |
Apollo 15 | NASA | Moon | 1971 | ~1 km | |
Apollo 16 | NASA | Moon | 1972 | ~1 km | |
Apollo 17 | NASA | Moon | 1972 | ~1 km, or 15 x 5 km[11] | Last crewed landing. Landing error ~400 m |
| NASA | Mars | 1976 | 280 x 100 km[12] | Retrorocket |
n/a | Shoemaker-Levy 9 (comet) | Jupiter | 1994-07-16 | n/a | As per IAUC in 1993 May 22; 0.0003 AU (45,000 km) from the center of Jupiter, i.e. within the planet's radius of 0.0005 AU (69,911 km) on 1994 July 25.4. (sic)[13] Actual train of impacts as finally projected occurred beyond Jupiter's limb.[14] Included for purposes of comparison. |
| NASA | Mars | 1997 | 200 x 70 km[15] or 200 x 100 km[16] [17] | Airbags |
| NASA | Mars | 1999 | 200 x 20 km[18] | Communications failed before landing attempt. |
Mars Exploration Rovers | NASA | Mars | 2003 | 150 x 20 km[19] | Airbags |
| ESA | Mars | 2003 | 174 x 106 km[20] | Successful landing, communications failure. |
| ESA | Titan | 2005 | 1200 x 200 km[21] [22] | |
| NASA | Mars | 2008 | 100 x 19 km or "70 km long"[23] | |
| NASA | Mars | 2012 | 25 x 20 km | Sky crane |
| CNSA | Moon | 2013 | 6 x 6 km[24] | Landed with a landing error of ~89 m, 2 m targeting precision |
| ESA | 67P/Churyumov–Gerasimenko | 2014 | 0.5 km[25] | |
Falcon 9 first-stage booster | SpaceX | Earth | 2015 | ~20 m[26] [27] | First reusable rocket, and the most precise landing system to date. Included for comparison. |
Schiaparelli EDM | ESA | Mars | 2016 | 100 x 15 km[28] [29] | Crash landing. |
Cassini | NASA | Saturn | 2017-09-17 | TBD | Rotation brought entry area into view. |
| NASA | Mars | 2018 | 130 x 27 km | |
| JAXA | | 2018 | 2 or 3 m | Sampling occurred in ~1 m from a target. |
| NASA | | 2020 | 6.5 m | Sampling occurred in ~1 m from a target. |
| NASA | Mars | 2021 | 7.7 x 6.6 km[30] | Sky crane. Landed 1.7 km from center of ellipse.[31] |
Tianwen-1 | CNSA | Mars | 2021 | 56 x 22 km[32] | |
ExoMars 2020 | ESA/Roscosmos | Mars | 2023 | 104 x 19 km[33] [34] [35] or 120 x 19 km[36] | Mission postponed until 2028. |
Luna 25 | Roscosmos | Moon | 2023-08-19 | 30 x 15 km[37] [38] [39] | Mission failed before landing attempt. |
Chandrayaan-3 | ISRO | Moon | 2023-08-23 | 4.5 x 2.5 km[40] or 4 x 2.4 km[41] | |
OSIRIS-REx return capsule | NASA | Earth | 2023-09-24 | 30 x 80 km,[42] 14 x 58 km,[43] or 12 x 30 km[44] | Sample return from an asteroid. Capsule landed ~ 8 km from the center. |
Peregrine Mission One | | Moon | 2024-01-18 | 24 x 6 km[45] | First U.S. lunar lander built since Apollo Program (1972). Aborted to Point Nemo. |
SLIM | JAXA | Moon | 2024-01-19 | 100 m[46] | Dubbed "Moon Sniper" for its accuracy (despite having landed upside-down).[47] Landed ~55 m from target point.[48] |
IM-1 Nova-C Odysseus | NASA | Moon | 2024-02-22 | | Landed ~1.5 km from the target.[49] | |
thumb|center|700px|Cassini retirement, Saturn, 9.4°N 15 W, 15 September 2017, at the southern edge of the North Equatorial Belt (itself approximately 15,000 km wide); the blander Equatorial Zone is immediately below.
See also
Notes and References
- Web site: Landing ellipses. The Planetary Society.
- Rapid generation of landing footprint based on geometry-predicted trajectory. Yuan-Long. Zhang. Ke-Jun. Chen. Lu-Hua. Liu. Guo-Jian. Tang. Wei-Min. Bao. August 22, 2017. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 231. 10. 1851–1861. CrossRef. 10.1177/0954410016662066. 114089246 .
- Web site: Zeroing in on the Target. NASA Mars Exploration.
- Book: https://arc.aiaa.org/doi/10.2514/6.2004-4774. Landing Footprint Computation for Entry Vehicles. Amitabh. Saraf. James. Leavitt. Mark. Ferch. Kenneth. Mease. AIAA Guidance, Navigation, and Control Conference and Exhibit . August 16, 2004. American Institute of Aeronautics and Astronautics. CrossRef. 10.2514/6.2004-4774. 978-1-62410-073-4 .
- Generation of Landing Footprints for Re-entry Vehicles Based on Lateral Profile Priority. Yuan-long. Zhang. Yu. Xie. Xin. Xu. February 1, 2023. International Journal of Aeronautical and Space Sciences. 24. 1. 261–273. Springer Link. 10.1007/s42405-022-00503-1. 2023IJASS..24..261Z . 251945950 .
- Web site: Surveyor III Mission Report.
- Web site: Human Lunar Landing Experience On Project Apollo . Eppler . Dean . 2019.
- Book: Chaikin, Andrew . A Man on the Moon: The Triumphant Story Of The Apollo Space Program . 2007. . New York . 88. 978-0-14-311235-8.
- Lorenz . Ralph D. . Planetary landings with terrain sensing and hazard avoidance: A review . Advances in Space Research . 1 January 2023 . 71 . 1 . 1–15 . 10.1016/j.asr.2022.11.024 . 0273-1177. free . 2023AdSpR..71....1L .
- Web site: Apollo 12 Image Library. www.nasa.gov.
- Web site: The Mystery of Lunar Water Part 2 Instructor Guide.
- Web site: NASA technology enables precision landing without a pilot. phys.org.
- Web site: IAUC 5800: 1993e. www.cbat.eps.harvard.edu.
- Periodic Comet Shoemaker-Levy 9 (1993e). J.. Watanabe. J.. Rogers. July 1, 1994. International Astronomical Union Circular. 6025. 1. 1994IAUC.6025....1W . NASA ADS.
- Web site: Zeroing in on the Target . NASA Mars Exploration . 22 January 2024 . en.
- Web site: MPF Landing Footprint Plots. mars.nasa.gov.
- Web site: Mars Pathfinder Landing Ellipses. NASA Jet Propulsion Laboratory (JPL).
- Web site: Mars Polar Lander and Deep Space 2 Landing Sites. nssdc.gsfc.nasa.gov.
- Web site: Image Gallery: Perseverance Rover - NASA . mars.nasa.gov . 22 January 2024 . en.
- Selection of the landing site in Isidis Planitia of Mars probe Beagle 2. 2003 . 10.1029/2001JE001820 . Bridges . J. C. . Seabrook . A. M. . Rothery . D. A. . Kim . J. R. . Pillinger . C. T. . Sims . M. R. . Golombek . M. P. . Duxbury . T. . Head . J. W. . Haldemann . A. F. C. . Mitchell . K. L. . Muller . J.-P. . Lewis . S. R. . Moncrieff . C. . Wright . I. P. . Grady . M. M. . Morley . J. G. . Journal of Geophysical Research: Planets . 108 . E1 . 5001 . 2003JGRE..108.5001B .
- 1997ESASP1177....5L Page 5. Huygens: Science. 1997ESASP1177....5L . Lebreton . J. -P. . Matson . D. L. . 1997 . 1177 . 5 .
- An overview of the descent and landing of the Huygens probe on Titan. Jean-Pierre. Lebreton. Olivier. Witasse. Claudio. Sollazzo. Thierry. Blancquaert. Patrice. Couzin. Anne-Marie. Schipper. Jeremy B.. Jones. Dennis L.. Matson. Leonid I.. Gurvits. David H.. Atkinson. Bobby. Kazeminejad. Miguel. Pérez-Ayúcar. December 23, 2005. Nature. 438. 7069. 758–764. www.nature.com. 10.1038/nature04347. 16319826 . 2005Natur.438..758L . 4355742 .
- Web site: Zeroing in on Mars . .
- 10.2514/1.A33208 . Guidance Summary and Assessment of the Chang'e-3 Powered Descent and Landing . 2016 . Li . Shuang . Jiang . Xiuqiang . Tao . Ting . Journal of Spacecraft and Rockets . 53 . 2 . 258–277 . 2016JSpRo..53..258L.
- Web site: A Close Up View of the Primary Landing Site on Comet 67P. D. C.. Agle. Jet Propulsion. Laboratory. October 16, 2014.
- Web site: SpaceX's self-landing rocket is a flying robot that's great at math . Quartz . 23 January 2024 . en . 21 February 2017.
- Autonomous Precision Landing of Space Rockets . The Bridge, National Academy of Engineering . Winter 2016 . Blackmore . Lars . 46 . 4 . 15–20 . 0737-6278 . January 15, 2017 . January 10, 2017 . https://web.archive.org/web/20170110121559/http://web.mit.edu/larsb/www/nae_bridge_2016.pdf . live .
- Europe and Russia prepare for historic landing on Mars. Elizabeth. Gibney. October 17, 2016. Nature. www.nature.com. 10.1038/nature.2016.20812. 133443172 .
- Web site: Spotlight on Schiaparelli's landing site. www.esa.int.
- Web site: Perseverance Rover Landing Ellipse in Jezero Crater . NASA Mars Exploration . 22 January 2024 . en.
- Web site: Perseverance lands on Mars. Jeff. Foust. February 18, 2021.
- Landing Site Selection and Characterization of Tianwen-1 (Zhurong Rover) on Mars. Wu, Bo. Dong, Jie. Wang, Yiran. Rao, Wei. Sun, Zezhou. Li, Zhaojin. Tan, Zhiyun. Chen, Zeyu. Wang, Chuang. Liu, Wai Chung. Chen, Long. Zhu, Jiaming. Li, Hongliang. 2022. Journal of Geophysical Research: Planets. 127. 4. 10.1029/2021je007137. 2022JGRE..12707137W . free.
- Web site: ESA - Robotic Exploration of Mars - Choosing the ExoMars 2020 landing site . exploration.esa.int . 24 January 2024.
- Web site: ExoMars 2020 Landing Map . The Planetary Society . 24 January 2024 . en.
- Favaro . E. A. . Balme . M. R. . Davis . J. M. . Grindrod . P. M. . Fawdon . P. . Barrett . A. M. . Lewis . S. R. . The Aeolian Environment of the Landing Site for the ExoMars Rosalind Franklin Rover in Oxia Planum, Mars . Journal of Geophysical Research: Planets . April 2021 . 126 . 4 . 10.1029/2020JE006723 . 2021JGRE..126.6723F . 24 January 2024 . en . 2169-9097.
- Web site: ExoMars landing site revealed News . University of Leicester . 24 January 2024 . en . 22 November 2018.
- Krasilnikov . S. S. . Basilevsky . A. T. . Ivanov . M. A. . Krasilnikov . A. S. . Geological and Geomorphological Characteristics of High-Priority Landing Sites for the Luna-Glob Mission . Solar System Research . 1 March 2021 . 55 . 2 . 83–96 . 10.1134/S0038094621010056 . en . 1608-3423. free . 2021SoSyR..55...83K .
- Ivanov . M.A. . Abdrakhimov . A.M. . Basilevsky . A.T. . Demidov . N.E. . Guseva . E.N. . Head . J.W. . Hiesinger . H. . Kohanov . A.A. . Krasilnikov . S.S. . Geological characterization of the three high-priority landing sites for the Luna-Glob mission . Planetary and Space Science . November 2018 . 162 . 190–206 . 10.1016/j.pss.2017.08.004. 2018P&SS..162..190I .
- Ivanov . M.A. . Hiesinger . H. . Abdrakhimov . A.M. . Basilevsky . A.T. . Head . J.W. . Pasckert . J-H. . Bauch . K. . van der Bogert . C.H. . Gläser . P. . Kohanov . A. . Landing site selection for Luna-Glob mission in crater Boguslawsky . Planetary and Space Science . November 2015 . 117 . 45–63 . 10.1016/j.pss.2015.05.007. 2015P&SS..117...45I .
- Web site: India's Chandrayaan-3 Will Attempt Soft Lunar Landing | Aviation Week Network. aviationweek.com.
- Web site: 小型月着陸実証機「SLIM」月着陸へ向けた今後の予定 . Small lunar landing demonstration vehicle "SLIM" Future plans for the moon landing . JAXA .
- Web site: OSIRIS-REx Mission Profile – OSIRIS-REx Spaceflight101 . 24 January 2024.
- Web site: Warren . Haygen . Historic OSIRIS-REx asteroid samples successfully return to Earth . NASASpaceFlight.com . 24 January 2024 . 24 September 2023.
- Web site: Foust . Jeff . OSIRIS-REx sample capsule lands in Utah . SpaceNews . 24 January 2024 . 24 September 2023.
- Web site: Astrobotic's Peregrine lunar lander burns up over Pacific Ocean. Jackie. Wattles. January 19, 2024. CNN.
- Web site: SLIMの月面ピンポイント着陸技術. 宇宙科学研究所.
- Web site: McCurry . Justin . Japan's 'moon sniper' probe made incredibly accurate landing, but is now upside down . The Guardian . 29 February 2024 . 26 January 2024.
- Web site: Japan releases image of SLIM spacecraft upside down on moon . Nikkei Asia . 7 February 2024.
- Web site: Foust . Jeff . Intuitive Machines expects early end to IM-1 lunar lander mission . SpaceNews . 29 February 2024 . 26 February 2024.