This article summarizes equations in the theory of quantum mechanics.
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is, also known as the reduced Planck constant or Dirac constant.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI unit | Dimension | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wavefunction | ψ, Ψ | To solve from the Schrödinger equation | varies with situation and number of particles | ||||||||||
Wavefunction probability density | ρ | \rho=\left | \Psi \right | ^2 = \Psi^* \Psi | m−3 | [L]−3 | |||||||
Wavefunction probability current | j | Non-relativistic, no external field: \begin{align} j&=
\left(\Psi*\nabla\Psi-\Psi\nabla\Psi*\right)\\ &=
\operatorname{Im}\left(\Psi*\nabla\Psi\right)=\operatorname{Re}\left(\Psi*
\nabla\Psi\right) \end{align} star * is complex conjugate | m−2⋅s−1 | [T]−1 [L]−2 | |||||||||
The general form of wavefunction for a system of particles, each with position ri and z-component of spin sz i. Sums are over the discrete variable sz, integrals over continuous positions r.
For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is mathematically necessary). Following are general mathematical results, used in calculations.
Property or effect | Nomenclature | Equation | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wavefunction for N particles in 3d |
| In function notation: \Psi=\Psi\left(r,
t\right) in bra–ket notation: | \Psi\rangle = \sum_ \sum_\cdots\sum_\int_\int_\cdots\int_ \mathrm\mathbf_1\mathrm\mathbf_2\cdots\mathrm\mathbf_N \Psi | \mathbf, \mathbf\rangle for non-interacting particles: \Psi=
\left(rn,szn,t\right) | ||||||||||||||||||||||||
Position-momentum Fourier transform (1 particle in 3d) |
| \begin{align}\Phi(p,sz,t)&=
3}\int\limitsallspacee-ip ⋅ r/\hbar\Psi(r,
\ &\upharpoonleft\downharpoonright\\ \Psi(r,sz,t)&=
3}\int\limitsallspacee+ip ⋅ r/\hbar
\\ \end{align} | ||||||||||||||||||||||||||
General probability distribution |
| P=
\left | \Psi \right | ^2\mathrm^3\mathbf_1\mathrm^3\mathbf_2\cdots\mathrm^3\mathbf_N\,\! | ||||||||||||||||||||||||
General normalization condition | P=
\int\limitsallspace … \int\limitsallspace \int\limitsallspace\left | \Psi \right | ^2\mathrm^3\mathbf_1\mathrm^3\mathbf_2\cdots\mathrm^3\mathbf_N = 1\,\! | |||||||||||||||||||||||||
Property or effect | Nomenclature | Equation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Planck–Einstein equation and de Broglie wavelength relations |
| P=(E/c,p)=\hbar(\omega/c,k)=\hbarK | |||||||||||||||
Schrödinger equation |
| General time-dependent case:
\Psi=\hat{H}\Psi Time-independent case: \hat{H}\Psi=E\Psi | |||||||||||||||
Heisenberg equation |
\langle\rangle |
t} | |||||||||||||||
Time evolution in Heisenberg picture (Ehrenfest theorem) |
of a particle. |
\langle\hat{A}\rangle=
\langle[\hat{A},\hat{H}]\rangle+\left\langle
For momentum and position;
\langler\rangle=\langlep\rangle
\langlep\rangle=-\langle\nablaV\rangle | |||||||||||||||
Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative.
One particle | N particles | ||||||||||||||||||||||||||||||||||||||||||||||||
One dimension | \hat{H}=
+V(x)=-
+V(x) | \begin{align} \hat{H}&=
+V(x1,x2, … xN)\ &=-
+V(x1,x2, … xN)\end{align} where the position of particle n is xn. | |||||||||||||||||||||||||||||||||||||||||||||||
E\Psi=-
\Psi+V\Psi | E\Psi=-
\Psi+V\Psi. | ||||||||||||||||||||||||||||||||||||||||||||||||
\Psi(x,t)=\psi(x)e-iEt/\hbar. There is a further restriction — the solution must not grow at infinity, so that it has either a finite L2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum):[1] \ | \psi \ | ^2 = \int | \psi(x) | ^2\, dx.\, | \Psi=e-iEt/\hbar\psi(x1,x2 … xN) for non-interacting particles \Psi=e-i{E | ||||||||||||||||||||||||||||||||||||||||||||
Three dimensions | \begin{align}\hat{H}&=
where the position of the particle is r = (x, y, z). | \begin{align}\hat{H}&=
where the position of particle n is r n = (xn, yn, zn), and the Laplacian for particle n using the corresponding position coordinates is
2}+
2}+
2} | |||||||||||||||||||||||||||||||||||||||||||||||
E\Psi=-
\nabla2\Psi+V\Psi | E\Psi=-
+V\Psi | ||||||||||||||||||||||||||||||||||||||||||||||||
\Psi=\psi(r)e-iEt/\hbar | \Psi=e-iEt/\hbar\psi(r1,r2 … rN) for non-interacting particles \Psi=e-i{E |
Again, summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of solutions.
One particle | N particles | ||||||||||||||||||||||||||||||||||||||||||||||||
One dimension | \hat{H}=
+V(x,t)=-
+V(x,t) | \begin{align} \hat{H}&=
+V(x1,x2, … xN,t)\\ &=-
+V(x1,x2, … xN,t) \end{align} where the position of particle n is xn. | |||||||||||||||||||||||||||||||||||||||||||||||
\Psi=-
\Psi+V\Psi |
\Psi=-
\Psi+V\Psi. | ||||||||||||||||||||||||||||||||||||||||||||||||
\Psi=\Psi(x,t) | \Psi=\Psi(x1,x2 … xN,t) | ||||||||||||||||||||||||||||||||||||||||||||||||
Three dimensions | \begin{align}\hat{H}&=
| \begin{align}\hat{H}&=
| |||||||||||||||||||||||||||||||||||||||||||||||
\Psi=-
\nabla2\Psi+V\Psi |
\Psi=-
+V\Psi This last equation is in a very high dimension,[2] so the solutions are not easy to visualize. | ||||||||||||||||||||||||||||||||||||||||||||||||
\Psi=\Psi(r,t) | \Psi=\Psi(r1,r2, … rN,t) |
Property/Effect | Nomenclature | Equation |
---|---|---|
Photoelectric equation |
| Kmax=hf-\Phi |
Threshold frequency and Work function |
| Can only be found by experiment. The De Broglie relations give the relation between them: \phi=hf0 |
Photon momentum |
| The De Broglie relations give: p=hf/c=h/λ |
Property or effect | Nomenclature | Equation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Heisenberg's uncertainty principles |
| Position–momentum \sigma(x)\sigma(p)\ge
Energy-time \sigma(E)\sigma(t)\ge
\ | Number-phase \sigma(n)\sigma(\phi)\ge
| |||||||||
Dispersion of observable | A = observables (eigenvalues of operator) | \begin{align} \sigma(A)2&=\langle(A-\langleA\rangle)2\rangle\\ &=\langleA2\rangle-\langleA\rangle2 \end{align} | ||||||||||
General uncertainty relation | A, B = observables (eigenvalues of operator) | \sigma(A)\sigma(B)\geq
\langlei[\hat{A},\hat{B}]\rangle | ||||||||||
Equation | ||||||||||
Density of states | N(E)=8\sqrt{2}\pim3/2E1/2/h3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fermi–Dirac distribution (fermions) | P(Ei)=
| |||||||||
Bose–Einstein distribution (bosons) | P(Ei)=
| |||||||||
See main article: angular momentum operator and quantum number.
Property or effect | Nomenclature | Equation | |||||||
---|---|---|---|---|---|---|---|---|---|
Angular momentum quantum numbers |
| Spin: \begin{align}&\Verts\Vert=\sqrt{s(s+1)}\hbar\\ &ms\in\{-s,-s+1 … s-1,s\}\\ \end{align} Orbital: \begin{align}&\ell\in\{0 … n-1\}\\ &m\ell\in\{-\ell,-\ell+1 … \ell-1,\ell\}\\ \end{align}\ | Total: \begin{align}&j=\ell+s\\ &mj\in\{|\ell-s|,|\ell-s|+1 … |\ell+s|-1,|\ell+s|\}\\ \end{align} | ||||||
Angular momentum magnitudes | angular momementa:
| Spin magnitude: | \mathbf | = \hbar\sqrt\,\! Orbital magnitude: | \mathbf | = \hbar\sqrt\,\! Total magnitude: J=L+S\ | \mathbf | = \hbar\sqrt\,\! | |
Angular momentum components | Spin: Sz=ms\hbar Orbital: Lz=m\ell\hbar\ | ||||||||
In what follows, B is an applied external magnetic field and the quantum numbers above are used.
Property or effect | Nomenclature | Equation | ||||
---|---|---|---|---|---|---|
orbital magnetic dipole moment |
| \boldsymbol{\mu}\ell=-eL/2me=g\ell
L \mu\ell,z=-m\ell\muB\ | ||||
spin magnetic dipole moment |
| \boldsymbol{\mu}s=-eS/me=gs
S z-component: \mus,z=-eSz/me=gseSz/2me\ | ||||
dipole moment potential | U = potential energy of dipole in field | U=-\boldsymbol{\mu} ⋅ B=-\muzB | ||||
See main article: Hydrogen atom.
Property or effect | Nomenclature | Equation | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy level |
| En=-me4/
h2n2=-13.61eV/n2 | |||||||||||||||||||||
Spectrum | λ = wavelength of emitted photon, during electronic transition from Ei to Ej |
=R\left(
-
\right),nj<ni | |||||||||||||||||||||