List of equations in quantum mechanics explained

This article summarizes equations in the theory of quantum mechanics.

Wavefunctions

A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is, also known as the reduced Planck constant or Dirac constant.

Quantity (common name/s) (Common) symbol/sDefining equationSI unit Dimension
Wavefunctionψ, Ψ To solve from the Schrödinger equationvaries with situation and number of particles
Wavefunction probability densityρ

\rho=\left

\Psi \right ^2 = \Psi^* \Psi m−3[L]−3
Wavefunction probability currentjNon-relativistic, no external field:

\begin{align} j&=

-i\hbar
2m

\left(\Psi*\nabla\Psi-\Psi\nabla\Psi*\right)\\ &=

\hbar
m

\operatorname{Im}\left(\Psi*\nabla\Psi\right)=\operatorname{Re}\left(\Psi*

\hbar
im

\nabla\Psi\right) \end{align}

star * is complex conjugate

m−2⋅s−1[T]−1 [L]−2

The general form of wavefunction for a system of particles, each with position ri and z-component of spin sz i. Sums are over the discrete variable sz, integrals over continuous positions r.

For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is mathematically necessary). Following are general mathematical results, used in calculations.

Property or effect NomenclatureEquation
Wavefunction for N particles in 3d
    • r = (r1, r2... rN)
    • sz = (sz 1, sz 2, ..., sz N)
    In function notation:

    \Psi=\Psi\left(r,

    sz,

    t\right)

    in bra–ket notation:

    \Psi\rangle = \sum_ \sum_\cdots\sum_\int_\int_\cdots\int_ \mathrm\mathbf_1\mathrm\mathbf_2\cdots\mathrm\mathbf_N \Psi \mathbf, \mathbf\rangle

    for non-interacting particles:

    \Psi=

    N\Psi
    \prod
    n=1

    \left(rn,szn,t\right)

    Position-momentum Fourier transform (1 particle in 3d)
      • Φ = momentum–space wavefunction
      • Ψ = position–space wavefunction

      \begin{align}\Phi(p,sz,t)&=

      1
      \sqrt{2\pi\hbar

      3}\int\limitsallspacee-ipr/\hbar\Psi(r,

      3r
      s
      z,t)d

      \ &\upharpoonleft\downharpoonright\\ \Psi(r,sz,t)&=

      1
      \sqrt{2\pi\hbar

      3}\int\limitsallspacee+ipr/\hbar

      3p
      \Phi(p,s
      n

      \\ \end{align}

      General probability distribution
        • Vj = volume (3d region) particle may occupy,
        • P = Probability that particle 1 has position r1 in volume V1 with spin sz1 and particle 2 has position r2 in volume V2 with spin sz2, etc.

        P=

        \sum
        szN
        \sum
        sz2
        \sum
        sz1
        \int
        VN
        \int
        V2
        \int
        V1

        \left

        \Psi \right ^2\mathrm^3\mathbf_1\mathrm^3\mathbf_2\cdots\mathrm^3\mathbf_N\,\!
        General normalization condition

        P=

        \sum
        szN
        \sum
        sz2
        \sum
        sz1

        \int\limitsallspace\int\limitsallspace\int\limitsallspace\left

        \Psi \right ^2\mathrm^3\mathbf_1\mathrm^3\mathbf_2\cdots\mathrm^3\mathbf_N = 1\,\!

        Equations

        Wave–particle duality and time evolution

        Property or effect NomenclatureEquation
        Planck–Einstein equation and de Broglie wavelength relations
          • P = (E/c, p) is the four-momentum,
          • K = (ω/c, k) is the four-wavevector,
          • E = energy of particle
          • ω = 2πf is the angular frequency and frequency of the particle
          • ħ = h/2π are the Planck constants
          • c = speed of light

          P=(E/c,p)=\hbar(\omega/c,k)=\hbarK

          Schrödinger equation
            General time-dependent case:
            i\hbar\partial
            \partialt

            \Psi=\hat{H}\Psi

            Time-independent case:

            \hat{H}\Psi=E\Psi

            Heisenberg equation
              • Â = operator of an observable property
              • [] is the commutator

              \langle\rangle

              denotes the average
              d\hat{A}(t)=
              dt
              i[\hat{H},\hat{A}(t)]+
              \hbar
              \partial\hat{A
              (t)}{\partial

              t}

              Time evolution in Heisenberg picture (Ehrenfest theorem)

                of a particle.

                d
                dt

                \langle\hat{A}\rangle=

                1
                i\hbar

                \langle[\hat{A},\hat{H}]\rangle+\left\langle

                \partial\hat{A
                }\right\rangle

                For momentum and position;

                md
                dt

                \langler\rangle=\langlep\rangle

                d
                dt

                \langlep\rangle=-\langle\nablaV\rangle

                Non-relativistic time-independent Schrödinger equation

                Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative.

                One particle N particles
                One dimension

                \hat{H}=

                \hat{p
                2}{2m}

                +V(x)=-

                \hbar2
                2m
                d2
                dx2

                +V(x)

                \begin{align} \hat{H}&=

                N
                \sum
                n=1
                \hat{p
                n
                2}{2m
                n}

                +V(x1,x2,xN)\ &=-

                \hbar2
                2
                N
                \sum
                n=1
                1
                mn
                \partial2
                \partial
                2
                x
                n

                +V(x1,x2,xN)\end{align}

                where the position of particle n is xn.

                E\Psi=-

                \hbar2
                2m
                d2
                dx2

                \Psi+V\Psi

                E\Psi=-

                \hbar2
                2
                N
                \sum
                n=1
                1
                mn
                \partial2
                \partial
                2
                x
                n

                \Psi+V\Psi.

                \Psi(x,t)=\psi(x)e-iEt/\hbar.

                There is a further restriction — the solution must not grow at infinity, so that it has either a finite L2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum):[1]

                \

                \psi \^2 = \int \psi(x)^2\, dx.\,

                \Psi=e-iEt/\hbar\psi(x1,x2 … xN)

                for non-interacting particles

                \Psi=e-i{E

                }\prod_^N\psi(x_n) \,, \quad V(x_1,x_2,\cdots x_N) = \sum_^N V(x_n) \, .
                Three dimensions

                \begin{align}\hat{H}&=

                \hat{p
                \hat{p
                }} + V(\mathbf) \\& = -\frac\nabla^2 + V(\mathbf) \end

                where the position of the particle is r = (x, y, z).

                \begin{align}\hat{H}&=

                N
                \sum
                n=1
                \hat{p
                n\hat{p
                }_n} + V(\mathbf_1,\mathbf_2,\cdots\mathbf_N) \\& = -\frac\sum_^\frac\nabla_n^2 + V(\mathbf_1,\mathbf_2,\cdots\mathbf_N) \end

                where the position of particle n is r n = (xn, yn, zn), and the Laplacian for particle n using the corresponding position coordinates is

                2=\partial2
                {\partialxn
                \nabla
                n

                2}+

                \partial2
                {\partialyn

                2}+

                \partial2
                {\partialzn

                2}

                E\Psi=-

                \hbar2
                2m

                \nabla2\Psi+V\Psi

                E\Psi=-

                \hbar2
                2
                N
                \sum
                n=1
                1
                mn
                2\Psi
                \nabla
                n

                +V\Psi

                \Psi=\psi(r)e-iEt/\hbar

                \Psi=e-iEt/\hbar\psi(r1,r2 … rN)

                for non-interacting particles

                \Psi=e-i{E

                }\prod_^N\psi(\mathbf_n) \,, \quad V(\mathbf_1,\mathbf_2,\cdots \mathbf_N) = \sum_^N V(\mathbf_n)

                Non-relativistic time-dependent Schrödinger equation

                Again, summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of solutions.

                One particle N particles
                One dimension

                \hat{H}=

                \hat{p
                2}{2m}

                +V(x,t)=-

                \hbar2
                2m
                \partial2
                \partialx2

                +V(x,t)

                \begin{align} \hat{H}&=

                N
                \sum
                n=1
                \hat{p
                n
                2}{2m
                n}

                +V(x1,x2,xN,t)\\ &=-

                \hbar2
                2
                N
                \sum
                n=1
                1
                mn
                \partial2
                \partial
                2
                x
                n

                +V(x1,x2,xN,t) \end{align}

                where the position of particle n is xn.

                i\hbar\partial
                \partialt

                \Psi=-

                \hbar2
                2m
                \partial2
                \partialx2

                \Psi+V\Psi

                i\hbar\partial
                \partialt

                \Psi=-

                \hbar2
                2
                N
                \sum
                n=1
                1
                mn
                \partial2
                \partial
                2
                x
                n

                \Psi+V\Psi.

                \Psi=\Psi(x,t)

                \Psi=\Psi(x1,x2 … xN,t)

                Three dimensions

                \begin{align}\hat{H}&=

                \hat{p
                \hat{p
                }} + V(\mathbf,t) \\& = -\frac\nabla^2 + V(\mathbf,t) \\\end

                \begin{align}\hat{H}&=

                N
                \sum
                n=1
                \hat{p
                n\hat{p
                }_n} + V(\mathbf_1,\mathbf_2,\cdots\mathbf_N,t) \\& = -\frac\sum_^\frac\nabla_n^2 + V(\mathbf_1,\mathbf_2,\cdots\mathbf_N,t) \end
                i\hbar\partial
                \partialt

                \Psi=-

                \hbar2
                2m

                \nabla2\Psi+V\Psi

                i\hbar\partial
                \partialt

                \Psi=-

                \hbar2
                2
                N
                \sum
                n=1
                1
                mn
                2\Psi
                \nabla
                n

                +V\Psi

                This last equation is in a very high dimension,[2] so the solutions are not easy to visualize.

                \Psi=\Psi(r,t)

                \Psi=\Psi(r1,r2,rN,t)

                Photoemission

                Property/EffectNomenclatureEquation
                Photoelectric equation
                  • Kmax = Maximum kinetic energy of ejected electron (J)
                  • h = Planck constant
                  • f = frequency of incident photons (Hz = s−1)
                  • φ, Φ = Work function of the material the photons are incident on (J)

                  Kmax=hf-\Phi

                  Threshold frequency and Work function
                    • φ, Φ = Work function of the material the photons are incident on (J)
                    • f0, ν0 = Threshold frequency (Hz = s−1)
                    Can only be found by experiment.

                    The De Broglie relations give the relation between them:

                    \phi=hf0

                    Photon momentum
                      • p = momentum of photon (kg m s−1)
                      • f = frequency of photon (Hz = s−1)
                      • λ = wavelength of photon (m)
                      The De Broglie relations give:

                      p=hf/c=h/λ

                      Quantum uncertainty

                      Property or effect NomenclatureEquation
                      Heisenberg's uncertainty principles
                        • n = number of photons
                        • φ = wave phase
                        • [, ] = commutator
                        Position–momentum

                        \sigma(x)\sigma(p)\ge

                        \hbar
                        2

                        Energy-time

                        \sigma(E)\sigma(t)\ge

                        \hbar
                        2

                        \

                        Number-phase

                        \sigma(n)\sigma(\phi)\ge

                        \hbar
                        2

                        Dispersion of observableA = observables (eigenvalues of operator)

                        \begin{align} \sigma(A)2&=\langle(A-\langleA\rangle)2\rangle\\ &=\langleA2\rangle-\langleA\rangle2 \end{align}

                        General uncertainty relationA, B = observables (eigenvalues of operator)

                        \sigma(A)\sigma(B)\geq

                        1
                        2

                        \langlei[\hat{A},\hat{B}]\rangle

                        Property or effect ! scope="col" width="10"
                        Equation
                        Density of states

                        N(E)=8\sqrt{2}\pim3/2E1/2/h3

                        Fermi–Dirac distribution (fermions)

                        P(Ei)=

                        g(Ei)
                        e(E-\mu)/kT+1
                        where
                          • P(Ei) = probability of energy Ei
                          • g(Ei) = degeneracy of energy Ei (no of states with same energy)
                          • μ = chemical potential
                          Bose–Einstein distribution (bosons)

                          P(Ei)=

                          g(Ei)
                          (Ei-\mu)/kT
                          e-1

                          Angular momentum

                          See main article: angular momentum operator and quantum number.

                          Property or effect NomenclatureEquation
                          Angular momentum quantum numbers
                            • s = spin quantum number
                            • ms = spin magnetic quantum number
                            • = Azimuthal quantum number
                            • m = azimuthal magnetic quantum number
                            • j = total angular momentum quantum number
                            • mj = total angular momentum magnetic quantum number
                            Spin:

                            \begin{align}&\Verts\Vert=\sqrt{s(s+1)}\hbar\\ &ms\in\{-s,-s+1 … s-1,s\}\\ \end{align}

                            Orbital:

                            \begin{align}&\ell\in\{0n-1\}\\ &m\ell\in\{-\ell,-\ell+1 … \ell-1,\ell\}\\ \end{align}\

                            Total:

                            \begin{align}&j=\ell+s\\ &mj\in\{|\ell-s|,|\ell-s|+1|\ell+s|-1,|\ell+s|\}\\ \end{align}

                            Angular momentum magnitudesangular momementa:
                              • S = Spin,
                              • L = orbital,
                              • J = total
                              Spin magnitude:
                              \mathbf= \hbar\sqrt\,\!

                              Orbital magnitude:

                              \mathbf= \hbar\sqrt\,\!

                              Total magnitude:

                              J=L+S\

                              \mathbf= \hbar\sqrt\,\!
                              Angular momentum componentsSpin:

                              Sz=ms\hbar

                              Orbital:

                              Lz=m\ell\hbar\

                              Magnetic moments :

                              In what follows, B is an applied external magnetic field and the quantum numbers above are used.

                              Property or effect NomenclatureEquation
                              orbital magnetic dipole moment

                                \boldsymbol{\mu}\ell=-eL/2me=g\ell

                                \muB
                                \hbar

                                L

                                z-component:

                                \mu\ell,z=-m\ell\muB\

                                spin magnetic dipole moment

                                  \boldsymbol{\mu}s=-eS/me=gs

                                  \muB
                                  \hbar

                                  S

                                  z-component:

                                  \mus,z=-eSz/me=gseSz/2me\

                                  dipole moment potentialU = potential energy of dipole in field

                                  U=-\boldsymbol{\mu}B=-\muzB

                                  Hydrogen atom

                                  See main article: Hydrogen atom.

                                  Property or effect NomenclatureEquation
                                  Energy level

                                    En=-me4/

                                    2
                                    8\varepsilon
                                    0

                                    h2n2=-13.61eV/n2

                                    Spectrumλ = wavelength of emitted photon, during electronic transition from Ei to Ej
                                    1
                                    λ

                                    =R\left(

                                    1
                                    2
                                    n
                                    j

                                    -

                                    1
                                    2
                                    n
                                    i

                                    \right),nj<ni

                                    See also

                                    Sources

                                    Further reading

                                    Notes and References

                                    1. Book: Feynman . R.P. . Leighton . R.B. . Sand . M. . 1964 . Operators . . 3 . 20–7 . . 0-201-02115-3.
                                    2. Book: Shankar, R. . 1994 . Principles of Quantum Mechanics . limited . 141 . . 978-0-306-44790-7.