List of derivatives and integrals in alternative calculi explained

There are many alternatives to the classical calculus of Newton and Leibniz; for example, each of the infinitely many non-Newtonian calculi.[1] Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea.[2] [3] [4]

The table below is intended to assist people working with the alternative calculus called the "geometric calculus" (or its discrete analog). Interested readers are encouraged to improve the table by inserting citations for verification, and by inserting more functions and more calculi.

Table

In the following table;

\psi(x)=\Gamma'(x)
\Gamma(x)
is the digamma function,
\zeta\prime(-1,x)-\zeta\prime(-1)
\operatorname{K}(x)=e
z-z2
+z2
ln
(2\pi)-\psi(-2)(z)
2
=e
is the K-function,
(!x)=\Gamma(x+1,-1)
e
is subfactorial,

Ba(x)=-a\zeta(-a+1,x)

are the generalized to real numbers Bernoulli polynomials.
Function

f(x)

Derivative

f'(x)

Integral

\intf(x)dx


(constant term is omitted)
Multiplicative derivative

f*(x)

Multiplicative integral

\intf(x)dx


(constant factor is omitted)
Discrete derivative (difference)

\Deltaf(x)

Discrete integral (antidifference)

\Delta-1f(x)


(constant term is omitted)
Discrete
multiplicative derivative[5]
(multiplicative difference)
Discrete multiplicative integral[6] (indefinite product)

\prodxf(x)


(constant factor is omitted)

a

0

ax

1

ax

0

ax

1

ax

x

1

x2
2

\sqrt[x]{e}

xx
ex

1

x2-
2
x2
1+1x

\Gamma(x)

ax+b

a

ax2+2bx
2
\exp\left(a
ax+b

\right)

(b+a
b+x
a
x)
ex

a

ax2+2bx-ax
2
1+a
ax+b
x\Gamma(ax+b
a
a)
\Gamma(a+b)
a
1x
-1
x2

ln

x
1
\sqrt[x]{e
}
ex
xx
-1
x+x2

\psi(x)

x
x+1
1
\Gamma(x)

xa

axa-1

xa+1
a+1
ax
e

e-axax

(x+1)a-xa

a\notinZ-;

Ba+1(x)
a+1

,


a\inZ-;

(-1)a-1\psi(-a-1)(x)
\Gamma(-a)

,

\left(1+1x\right)
a

\Gamma(x)a

ax

axlna

ax
lna

a

x2
2
a

(a-1)ax

ax
a-1

a

x2+x
2
a

\sqrt[x]{a}

-\sqrt[x]{a
ln

a}{x2}

x\sqrt[x]{a}-\operatorname{Ei}\left(lna
x

\right)lna

-1
x2
a

aln

1
1+x
a
1
x
-a

?

-1
x+x2
a

a\psi(x)

logax

1
xlna

loga

x-x
lna
x

\exp\left(

1
xlnx

\right)

(logax)x
e\operatorname{li(x)
}
log
a\left(1x+1\right)

loga\Gamma(x)

logx(x+1)

?

xx

xx(1+lnx)

?

ex

-1x2(1-2lnx)
4
e

(x+1)x+1-xx

?

(x+1)x+1
xx

\operatorname{K}(x)

\Gamma(x)

\Gamma(x)\psi(x)

?

e\psi(x)

\psi(-2)(x)
e

(x-1)\Gamma(x)

(-1)x+1\Gamma(x)(!(-x))

x

\Gamma(x)x-1
\operatorname{K

(x)}

\sin(ax)

a\cos(ax)

-\dfrac{\cos(ax)}{a}

ea\cot(ax)

?

\sin(a(x+1))-\sin(ax)

-\dfrac{1}{2}\csc\left(\dfrac{a}{2}\right)\cos\left(\dfrac{a}{2}-ax\right)

\cos(a)+\sin(a)\cot(ax)

?

See also

References

  1. Book: Grossman . Michael . [{{google books|plainurl=yes|id=RLuJmE5y8pYC}} Non-Newtonian calculus ]. Katz . Robert . 1972 . Lee Press . 0-912938-01-3 . Pigeon Cove, Mass. . 308822.
  2. Bashirov . Agamirza E. . Kurpınar . Emine Mısırlı . Özyapıcı . Ali . 1 January 2008 . Multiplicative calculus and its applications . . en . 337 . 1 . 36–48 . 10.1016/j.jmaa.2007.03.081 . 2008JMAA..337...36B . free .
  3. Filip . Diana Andrada . Piatecki . Cyrille . 2014 . A non-Newtonian examination of the theory of exogenous economic growth . . 4 . 2 . 101–117.
  4. Florack . Luc . van Assen . Hans . January 2012 . Multiplicative Calculus in Biomedical Image Analysis . . en . 42 . 1 . 64–75 . 10.1007/s10851-011-0275-1 . 254652400 . 0924-9907 . SpringerLink. free .
  5. Khatami . Hamid Reza . Jahanshahi . M. . Aliev . N. . 5–10 July 2004 . An analytical method for some nonlinear difference equations by discrete multiplicative differentiation . Dynamical Systems and Applications, Proceedings . Antalya, Turkey . 455–462 . https://web.archive.org/web/20110706062336/http://faculty.uaeu.ac.ae/hakca/papers/khatami.pdf . 6 Jul 2011.
  6. Jahanshahi . M. . Aliev . N. . Khatami . Hamid Reza . 5–10 July 2004 . An analytic-numerical method for solving difference equations with variable coefficients by discrete multiplicative integration . Dynamical Systems and Applications, Proceedings . Antalya, Turkey . 425–435 . https://web.archive.org/web/20110706062316/http://faculty.uaeu.ac.ae/hakca/papers/jahanshahi.pdf . 6 Jul 2011.

External links