List of Johnson solids explained

In geometry, polyhedra are three-dimensional objects where points are connected by lines to form polygons. The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. A polyhedron is considered to be convex if:

A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal; examples include Platonic and Archimedean solids as well as prisms and antiprisms.The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92 such polyhedra in 1966. His conjecture that the list was complete and no other examples existed was proven by Russian-Israeli mathematician Victor Zalgaller (1920–2020) in 1969.

Some of the Johnson solids may be categorized as elementary polyhedra, meaning they cannot be separated by a plane to create two small convex polyhedra with regular faces. The Johnson solids satisfying this criteria are the first six—equilateral square pyramid, pentagonal pyramid, triangular cupola, square cupola, pentagonal cupola, and pentagonal rotunda. The criteria is also satisfied by eleven other Johnson solids, specifically the tridiminished icosahedron, parabidiminished rhombicosidodecahedron, tridiminished rhombicosidodecahedron, snub disphenoid, snub square antiprism, sphenocorona, sphenomegacorona, hebesphenomegacorona, disphenocingulum, bilunabirotunda, and triangular hebesphenorotunda. The rest of the Johnson solids are not elementary, and they are constructed using the first six Johnson solids together with Platonic and Archimedean solids in various processes. Augmentation involves attaching the Johnson solids onto one or more faces of polyhedra, while elongation or gyroelongation involve joining them onto the bases of a prism or antiprism, respectively. Some others are constructed by diminishment, the removal of one of the first six solids from one or more of a polyhedron's faces.

The following table contains the 92 Johnson solids, with edge length

a

. The table includes the solid's enumeration (denoted as

Jn

). It also includes the number of vertices, edges, and faces of each solid, as well as its symmetry group, surface area

A

, and volume

V

. Every polyhedron has its own characteristics, including symmetry and measurement. An object is said to have symmetry if there is a transformation that maps it to itself. All of those transformations may be composed in a group, alongside the group's number of elements, known as the order. In two-dimensional space, these transformations include rotating around the center of a polygon and reflecting an object around the perpendicular bisector of a polygon. A polygon that is rotated symmetrically by \frac is denoted by

Cn

, a cyclic group of order

n

; combining this with the reflection symmetry results in the symmetry of dihedral group

Dn

of order

2n

. In three-dimensional symmetry point groups, the transformations preserving a polyhedron's symmetry include the rotation around the line passing through the base center, known as the axis of symmetry, and the reflection relative to perpendicular planes passing through the bisector of a base, which is known as the pyramidal symmetry

Cn

of order

2n

. The transformation that preserves a polyhedron's symmetry by reflecting it across a horizontal plane is known as the prismatic symmetry

Dn

of order

4n

. The antiprismatic symmetry

Dn

of order

4n

preserves the symmetry by rotating its half bottom and reflection across the horizontal plane. The symmetry group

Cn

of order

2n

preserves the symmetry by rotation around the axis of symmetry and reflection on the horizontal plane; the specific case preserving the symmetry by one full rotation is

C1

of order 2, often denoted as

Cs

. The mensuration of polyhedra includes the surface area and volume. An area is a two-dimensional measurement calculated by the product of length and width; for a polyhedron, the surface area is the sum of the areas of all of its faces. A volume is a measurement of a region in three-dimensional space. The volume of a polyhedron may be ascertained in different ways: either through its base and height (like for pyramids and prisms), by slicing it off into pieces and summing their individual volumes, or by finding the root of a polynomial representing the polyhedron.

Jn

!scope=col
Solid namescope=col Imagescope=col Verticesscope=col Edgesscope=col Facesscope=col Symmetry group and its orderscope=col Surface area and volume
scope=row 1Equilateral square pyramid585

C4v

of order 8

\begin{align} A&=\left(1+\sqrt{3}\right)a2\\ &2.7321a2\\ V&=

\sqrt{2
}a^3 \\ &\approx 0.2357a^3 \end
scope=row 2Pentagonal pyramid6106

C5v

of order 10

\begin{align} A&=

a2\sqrt{
2
5
2

\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\\ &3.8855a2\\ V&=\left(

5+\sqrt{5
}\right)a^3 \\ &\approx 0.3015a^3 \end
scope=row 3Triangular cupola9158

C3v

of order 6

\begin{align} A&=\left(3+

5\sqrt{3
} \right) a^2 \\ &\approx 7.3301a^2 \\ V &= \left(\frac\right) a^3 \\ &\approx 1.1785a^3 \end
scope=row 4Square cupola122010

C4v

of order 8

\begin{align} A&=\left(7+2\sqrt{2}+\sqrt{3}\right)a2\\ &11.5605a2\\ V&=\left(1+

2\sqrt{2
}\right)a^3 \\ &\approx 1.9428a^3 \end
scope=row 5Pentagonal cupola152512

C5v

of order 10

\begin{align} A&=\left(

1
4

\left(20+5\sqrt{3}+\sqrt{5\left(145+62\sqrt{5}\right)}\right)\right)a2\\ &16.5798a2\\ V&=\left(

1
6

\left(5+4\sqrt{5}\right)\right)a3\\ &2.3241a3\end{align}

scope=row 6Pentagonal rotunda203517

C5v

of order 10

\begin{align} A&=\left(

1
2

\left(5\sqrt{3}+\sqrt{10\left(65+29\sqrt{5}\right)}\right)\right)a2\\ &22.3472a2\\ V&=\left(

1
12

\left(45+17\sqrt{5}\right)\right)a3\\ &6.9178a3\end{align}

scope=row 7Elongated triangular pyramid7127

C3v

of order 6

\begin{align} A&=\left(3+\sqrt{3}\right)a2\\ &4.7321a2\\ V&=\left(

1
12

\left(\sqrt{2}+3\sqrt{3}\right)\right)a3\\ &0.5509a3 \end{align}

scope=row 8Elongated square pyramid9169

C4v

of order 8

\begin{align} A&=\left(5+\sqrt{3}\right)a2\\ &6.7321a2\\ V&=\left(1+

\sqrt{2
}\right)a^3 \\ &\approx 1.2357a^3 \end
scope=row 9Elongated pentagonal pyramid112011

C5v

of order 10

\begin{align} A&=

20+5\sqrt{3
+

\sqrt{25+10\sqrt{5}}}{4}a2\\ &8.8855a2\\ V&=\left(

5+\sqrt{5
+

6\sqrt{25+10\sqrt{5}}}{24}\right)a3\\ &2.022a3\end{align}

scope=row 10Gyroelongated square pyramid92013

C4v

of order 8

\begin{align} A&=(1+3\sqrt{3})a2\\ &6.1962a2\\ V&=

1
6

\left(\sqrt{2}+2\sqrt{4+3\sqrt{2}}\right)a3\\ &1.1927a3 \end{align}

scope=row 11Gyroelongated pentagonal pyramid112516

C5v

of order 10

\begin{align} A&=

1
4

\left(15\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &8.2157a2\\ V&=

1
24

\left(25+9\sqrt{5}\right)a3\\ &1.8802a3 \end{align}

scope=row 12Triangular bipyramid596

D3h

of order 12

\begin{align} A&=

3\sqrt{3
}a^2 \\ &\approx 2.5981a^2 \\ V &= \fraca^3 \\ &\approx 0.2358a^3\end
scope=row 13Pentagonal bipyramid71510

D5h

of order 20

\begin{align} A&=

5\sqrt{3
}a^2 \\ &\approx 4.3301a^2 \\ V &= \frac \left(5+\sqrt\right)a^3 \\ &\approx 0.603a^3\end
scope=row 14Elongated triangular bipyramid8159

D3h

of order 12

\begin{align} A&=

3
2

\left(2+\sqrt{3}\right)a2\\ &5.5981a2\\ V&=

1
12

\left(2\sqrt{2}+3\sqrt{3}\right)a3\\ &0.6687a3 \end{align}

scope=row 15Elongated square bipyramid102012

D4h

of order 16

\begin{align} A&=2\left(2+\sqrt{3}\right)a2\\ &7.4641a2\\ V&=

1
3

\left(3+\sqrt{2}\right)a3\\ &1.4714a3 \end{align}

scope=row 16Elongated pentagonal bipyramid122515

D5h

of order 20

\begin{align} A&=

5
2

\left(2+\sqrt{3}\right)a2\\ &9.3301a2\\ V&=

1
12

\left(5+\sqrt{5}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a3\\ &2.3235a3 \end{align}

scope=row 17Gyroelongated square bipyramid102416

D4d

of order 16

\begin{align} A&=4\sqrt{3}a2\\ &6.9282a2\\ V&=

1
3

\left(\sqrt{2}+\sqrt{4+3\sqrt{2}}\right)a3\\ &1.4284a3 \end{align}

scope=row 18Elongated triangular cupola152714

C3v

of order 6

\begin{align} A&=

1
2

\left(18+5\sqrt{3}\right)a2\\ &13.3301a2\\ V&=

1
6

\left(5\sqrt{2}+9\sqrt{3}\right)a3\\ &3.7766a3 \end{align}

scope=row 19Elongated square cupola203618

C4v

of order 8

\begin{align} A&=(15+2\sqrt{2}+\sqrt{3})a2\\ &19.5605a2\\ V&=\left(3+

8\sqrt{2
}\right)a^3 \\ &\approx 6.7712a^3\end
scope=row 20Elongated pentagonal cupola254522

C5v

of order 10

\begin{align} A&=

1
4

\left(60+5\sqrt{3}+10\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &26.5798a2\\ V&=

1
6

\left(5+4\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ &10.0183a3 \end{align}

scope=row 21Elongated pentagonal rotunda305527

C5v

of order 10

\begin{align} A&=

1
2

a2\left(20+5\sqrt{3}+5\sqrt{5+2\sqrt{5}}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)\\ &32.3472a2\\ V&=

1
12

a3\left(45+17\sqrt{5}+30\sqrt{5+2\sqrt{5}}\right)\\ &14.612a3 \end{align}

scope=row 22Gyroelongated triangular cupola153320

C3v

of order 6

\begin{align} A&=

1
2

\left(6+11\sqrt{3}\right)a2\\ &12.5263a2\\ V&=

1\sqrt{
3
61
2

+18\sqrt{3}+30\sqrt{1+\sqrt{3}}}a3\\ &3.5161a3 \end{align}

scope=row 23Gyroelongated square cupola204426

C4v

of order 8

\begin{align} A&=(7+2\sqrt{2}+5\sqrt{3})a2\\ &18.4887a2\\ V&=\left(1+

2
3

\sqrt{2}+

2
3

\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right)a3\\ &6.2108a3 \end{align}

scope=row 24Gyroelongated pentagonal cupola255532

C5v

of order 10

\begin{align} A&=

1
4

\left(20+25\sqrt{3}+10\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &25.2400a2\\ V&=\left(

5+
6
2
3

\sqrt{5}+

5
6

\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ &9.0733a3 \end{align}

scope=row 25Gyroelongated pentagonal rotunda306537

C5v

of order 10

\begin{align} A&=

1
2

\left(15\sqrt{3}+\left(5+3\sqrt{5}\right)\sqrt{5+2\sqrt{5}}\right)a2\\ &31.0075a2\\ V&=\left(

45+
12
17
12

\sqrt{5}+

5
6

\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ &13.6671a3 \end{align}

scope=row 26Gyrobifastigium8148

D2d

of order 8

\begin{align} A&=\left(4+\sqrt{3}\right)a2\\ &5.7321a2\\ V&=\left(

\sqrt{3
}\right)a^3 \\ &\approx 0.866a^3\end
scope=row 27Triangular orthobicupola122414

D3h

of order 12

\begin{align} A&=2\left(3+\sqrt{3}\right)a2\\ &9.4641a2\\ V&=

5\sqrt{2
}a^3 \\ &\approx 2.357a^3\end
scope=row 28Square orthobicupola163218

D4h

of order 16

\begin{align} A&=2(5+\sqrt{3})a2\\ &13.4641a2\\ V&=\left(2+

4\sqrt{2
}\right)a^3 \\ &\approx 3.8856a^3\end
scope=row 29Square gyrobicupola163218

D4d

of order 16

\begin{align} A&=2(5+\sqrt{3})a2\\ &13.4641a2\\ V&=\left(2+

4\sqrt{2
}\right)a^3 \\ &\approx 3.8856a^3\end
scope=row 30Pentagonal orthobicupola204022

D5h

of order 20

\begin{align} A&=\left(10+\sqrt{

5
2

\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &17.7711a2\\ V&=

1
3

\left(5+4\sqrt{5}\right)a3\\ &4.6481a3 \end{align}

scope=row 31Pentagonal gyrobicupola204022

D5d

of order 20

\begin{align} A&=\left(10+\sqrt{

5
2

\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &17.7711a2\\ V&=

1
3

\left(5+4\sqrt{5}\right)a3\\ &4.6481a3 \end{align}

scope=row 32Pentagonal orthocupolarotunda255027

C5v

of order 10

\begin{align} A&=\left(5+

1
4

\sqrt{1900+490\sqrt{5}+210\sqrt{75+30\sqrt{5}}}\right)a2\\ &23.5385a2\\ V&=

5
12

\left(11+5\sqrt{5}\right)a3\\ &9.2418a3 \end{align}

scope=row 33Pentagonal gyrocupolarotunda255027

C5v

of order 10

\begin{align} A&=\left(5+

15\sqrt{3}+
4
7
4

\sqrt{25+10\sqrt{5}}\right)a2\\ &23.5385a2\\ V&=

5
12

\left(11+5\sqrt{5}\right)a3\\ &9.2418a3 \end{align}

scope=row 34Pentagonal orthobirotunda306032

D5h

of order 20

\begin{align} A&=\left((5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &29.306a2\\ V&=

1
6

(45+17\sqrt{5})a3\\ &13.8355a3 \end{align}

scope=row 35Elongated triangular orthobicupola183620

D3h

of order 12

\begin{align} A&=2(6+\sqrt{3})a2\\ &15.4641a2\\ V&=\left(

5\sqrt{2
} + \frac\right)a^3 \\ &\approx 4.9551a^3\end
scope=row 36Elongated triangular gyrobicupola183620

D3d

of order 12

\begin{align} A&=2(6+\sqrt{3})a2\\ &15.4641a2\\ V&=\left(

5\sqrt{2
} + \frac\right)a^3 \\ &\approx 4.9551a^3\end
scope=row 37Elongated square gyrobicupola244826

D4d

of order 16

\begin{align} A&=2(9+\sqrt{3})a2\\ &21.4641a2\\ V&=\left(4+

10\sqrt{2
}\right)a^3 \\ &\approx 8.714a^3\end
scope=row 38Elongated pentagonal orthobicupola306032

D5h

of order 20

\begin{align} A&=\left(20+\sqrt{

5
2

\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &27.7711a2\\ V&=

1
6

\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ &12.3423a3 \end{align}

scope=row 39Elongated pentagonal gyrobicupola306032

D5d

of order 20

\begin{align} A&=\left(20+\sqrt{

5
2

\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &27.7711a2\\ V&=

1
6

\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ &12.3423a3 \end{align}

scope=row 40Elongated pentagonal orthocupolarotunda357037

C5v

of order 10

\begin{align} A&=

1
4

\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &33.5385a2\\ V&=

5
12

\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a3\\ &16.936a3 \end{align}

scope=row 41Elongated pentagonal gyrocupolarotunda357037

C5v

of order 10

\begin{align} A&=

1
4

\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &33.5385a2\\ V&=

5
12

\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a3\\ &16.936a3 \end{align}

scope=row 42Elongated pentagonal orthobirotunda408042

D5h

of order 20

\begin{align} A&=\left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &39.306a2\\ V&=

1
6

\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ &21.5297a3 \end{align}

scope=row 43Elongated pentagonal gyrobirotunda408042

D5d

of order 20

\begin{align} A&=\left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ &39.306a2\\ V&=

1
6

\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ &21.5297a3 \end{align}

scope=row 44Gyroelongated triangular bicupola184226

D3

of order 6

\begin{align} A&=\left(6+5\sqrt{3}\right)a2\\ &14.6603a2\\ V&=\sqrt{2}\left(

5
3

+\sqrt{1+\sqrt{3}}\right)a3\\ &4.6946a3 \end{align}

scope=row 45Gyroelongated square bicupola245634

D4

of order 8

\begin{align} A&=\left(10+6\sqrt{3}\right)a2\\ &20.3923a2\\ V&=\left(2+

4
3

\sqrt{2}+

2
3

\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right)a3\\ &8.1536a3 \end{align}

scope=row 46Gyroelongated pentagonal bicupola307042

D5

of order 10

\begin{align} A&=

1
2

\left(20+15\sqrt{3}+\sqrt{25+10\sqrt{5}}\right)a2\\ &26.4313a2\\ V&=\left(

5+
3
4
3

\sqrt{5}+

5
6

\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ &11.3974a3 \end{align}

scope=row 47Gyroelongated pentagonal cupolarotunda358047

C5

of order 5

\begin{align} A&=

1
4

\left(20+35\sqrt{3}+7\sqrt{25+10\sqrt{5}}\right)a2\\ &32.1988a2\\ V&=\left(

55+
12
25
12

\sqrt{5}+

5
6

\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ &15.9911a3 \end{align}

scope=row 48Gyroelongated pentagonal birotunda409052

D5

of order 10

\begin{align} A&=\left(10\sqrt{3}+3\sqrt{25+10\sqrt{5}}\right)a2\\ &37.9662a2\\ V&=\left(

45+
6
17
6

\sqrt{5}+

5
6

\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ &20.5848a3 \end{align}

scope=row 49Augmented triangular prism7138

C2v

of order 4

\begin{align} A&=

1
2

(4+3\sqrt{3})a2\\ &4.5981a2\\ V&=

1
12

(2\sqrt{2}+3\sqrt{3})a3\\ &0.6687a3 \end{align}

scope=row 50Biaugmented triangular prism81711

C2v

of order 4

\begin{align} A&=

1
2

(2+5\sqrt{3})a2\\ &5.3301a2\\ V&=\sqrt{

59
144

+

1
\sqrt{6
}}a^3 \\ &\approx 0.9044a^3\end
scope=row 51Triaugmented triangular prism92114

D3h

of order 12

\begin{align} A&=

7\sqrt{3
}a^2 \\ &\approx 6.0622a^2 \\ V &= \fraca^3 \\ &\approx 1.1401a^3\end
scope=row 52Augmented pentagonal prism111910

C2v

of order 4

\begin{align} A&=

1
2

\left(8+2\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &9.173a2\\ V&=

1
12

\sqrt{233+90\sqrt{5}+12\sqrt{50+20\sqrt{5}}}a3\\ &1.9562a3 \end{align}

scope=row 53Biaugmented pentagonal prism122313

C2v

of order 4

\begin{align} A&=

1
2

a2\left(6+4\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)\\ &9.9051a2\\ V&=

1
12

a3\sqrt{257+90\sqrt{5}+24\sqrt{50+20\sqrt{5}}}\\ &2.1919a3 \end{align}

scope=row 54Augmented hexagonal prism132211

C2v

of order 4

\begin{align} A&=(5+4\sqrt{3})a2\\ &11.9282a2\\ V&=

1
6

\left(\sqrt{2}+9\sqrt{3}\right)a3\\ &2.8338a3 \end{align}

scope=row 55Parabiaugmented hexagonal prism142614

D2h

of order 8

\begin{align} A&=(4+5\sqrt{3})a2\\ &12.6603a2\\ V&=

1
6

\left(2\sqrt{2}+9\sqrt{3}\right)a3\\ &3.0695a3 \end{align}

scope=row 56Metabiaugmented hexagonal prism142614

C2v

of order 4

\begin{align} A&=(4+5\sqrt{3})a2\\ &12.6603a2\\ V&=

1
6

\left(2\sqrt{2}+9\sqrt{3}\right)a3\\ &3.0695a3 \end{align}

scope=row 57Triaugmented hexagonal prism153017

D3h

of order 12

\begin{align} A&=3\left(1+2\sqrt{3}\right)a2\\ &13.3923a2\\ V&=\left(

1
\sqrt{2
}+\frac\right)a^3 \\ &\approx 3.3052a^3\end
scope=row 58Augmented dodecahedron213516

C5v

of order 10

\begin{align} A&=

1
4

\left(5\sqrt{3}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &21.0903a2\\ V&=

1
24

\left(95+43\sqrt{5}\right)a3\\ &7.9646a3 \end{align}

scope=row 59Parabiaugmented dodecahedron224020

D5d

of order 20

\begin{align} A&=

5
2

\left(\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &21.5349a2\\ V&=

1
6

\left(25+11\sqrt{5}\right)a3\\ &8.2661a3 \end{align}

scope=row 60Metabiaugmented dodecahedron224020

C2v

of order 4

\begin{align} A&=

5
2

\left(\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &21.5349a2\\ V&=

1
6

\left(25+11\sqrt{5}\right)a3\\ &8.2661a3 \end{align}

scope=row 61Triaugmented dodecahedron234524

C3v

of order 6

\begin{align} A&=

3
4

\left(5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &21.9795a2\\ V&=

5
8

\left(7+3\sqrt{5}\right)a3\\ &8.5676a3 \end{align}

scope=row 62Metabidiminished icosahedron102012

C2v

of order 4

\begin{align} A&=

1
2

\left(5\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &7.7711a2\\ V&=

1
6

\left(5+2\sqrt{5}\right)a3\\ &1.5787a3 \end{align}

scope=row 63Tridiminished icosahedron9158

C3v

of order 6

\begin{align} A&=

1
4

\left(5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &7.3265a2\\ V&=\left(

5+
8
7\sqrt{5
}\right)a^3 \\ &\approx 1.2772a^3\end
scope=row 64Augmented tridiminished icosahedron101810

C3v

of order 6

\begin{align} A&=

1
4

\left(7\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &8.1925a2\\ V&=

1
24

\left(15+2\sqrt{2}+7\sqrt{5}\right)a3\\ &1.395a3 \end{align}

scope=row 65Augmented truncated tetrahedron152714

C3v

of order 6

\begin{align} A&=

1
2

\left(6+13\sqrt{3}\right)a2\\ &14.2583a2\\ V&=

11
2\sqrt{2
}a^3 \\ &\approx 3.8891a^3\end
scope=row 66Augmented truncated cube284822

C4v

of order 8

\begin{align} A&=(15+10\sqrt{2}+3\sqrt{3})a2\\ &34.3383a2\\ V&=\left(8+

16\sqrt{2
}\right)a^3 \\ &\approx 15.5425a^3\end
scope=row 67Biaugmented truncated cube326030

D4h

of order 16

\begin{align} A&=2\left(9+4\sqrt{2}+2\sqrt{3}\right)a2\\ &36.2419a2\\ V&=(9+6\sqrt{2})a3\\ &17.4853a3 \end{align}

scope=row 68Augmented truncated dodecahedron6510542

C5v

of order 10

\begin{align} A&=

1
4

\left(20+25\sqrt{3}+110\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &102.1821a2\\ V&=\left(

505+
12
81\sqrt{5
}\right)a^3 \\ &\approx 87.3637a^3\end
scope=row 69Parabiaugmented truncated dodecahedron7012052

D5d

of order 20

\begin{align} A&=

1
2

\left(20+15\sqrt{3}+50\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &103.3734a2\\ V&=

1
12

\left(515+251\sqrt{5}\right)a3\\ &89.6878a3 \end{align}

scope=row 70Metabiaugmented truncated dodecahedron7012052

C2v

of order 4

\begin{align} A&=

1
2

\left(20+15\sqrt{3}+50\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &103.3734a2\\ V&=

1
12

\left(515+251\sqrt{5}\right)a3\\ &89.6878a3 \end{align}

scope=row 71Triaugmented truncated dodecahedron7513562

C3v

of order 6

\begin{align} A&=

1
4

\left(60+35\sqrt{3}+90\sqrt{5+2\sqrt{5}}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &104.5648a2\\ V&=

7
12

\left(75+37\sqrt{5}\right)a3\\ &92.0118a3 \end{align}

scope=row 72Gyrate rhombicosidodecahedron6012062

C5v

of order 10

\begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &59.306a2\\ V&=\left(20+

29\sqrt{5
}\right)a^3 \\ &\approx 41.6153a^3\end
scope=row 73Parabigyrate rhombicosidodecahedron6012062

D5d

of order 20

\begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &59.306a2\\ V&=\left(20+

29\sqrt{5
}\right)a^3 \\ &\approx 41.6153a^3\end
scope=row 74Metabigyrate rhombicosidodecahedron6012062

C2v

of order 4

\begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &59.306a2\\ V&=\left(20+

29\sqrt{5
}\right)a^3 \\ &\approx 41.6153a^3\end
scope=row 75Trigyrate rhombicosidodecahedron6012062

C3v

of order 6

\begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &59.306a2\\ V&=\left(20+

29\sqrt{5
}\right)a^3 \\ &\approx 41.6153a^3\end
scope=row 76Diminished rhombicosidodecahedron5510552

C5v

of order 10

\begin{align} A&=

1
4

\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &58.1147a2\\ V&=\left(

115
6

+9\sqrt{5}\right)a3\\ &39.2913a3 \end{align}

scope=row 77Paragyrate diminished rhombicosidodecahedron5510552

C5v

of order 10

\begin{align} A&=

1
4

\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &58.1147a2\\ V&=\left(

115
6

+9\sqrt{5}\right)a3\\ &39.2913a3 \end{align}

scope=row 78Metagyrate diminished rhombicosidodecahedron5510552

Cs

of order 2

\begin{align} A&=

1
4

\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &58.1147a2\\ V&=\left(

115
6

+9\sqrt{5}\right)a3\\ &39.2913a3 \end{align}

scope=row 79Bigyrate diminished rhombicosidodecahedron5510552

Cs

of order 2

\begin{align} A&=

1
4

\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &58.1147a2\\ V&=\left(

115
6

+9\sqrt{5}\right)a3\\ &39.2913a3 \end{align}

scope=row 80Parabidiminished rhombicosidodecahedron509042

D5d

of order 20

\begin{align} A&=

5
2

\left(8+\sqrt{3}+2\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &56.9233a2\\ V&=

5
3

\left(11+5\sqrt{5}\right)a3\\ &36.9672a3 \end{align}

scope=row 81Metabidiminished rhombicosidodecahedron509042

C2v

of order 4

\begin{align} A&=

5
2

\left(8+\sqrt{3}+2\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &56.9233a2\\ V&=

5
3

\left(11+5\sqrt{5}\right)a3\\ &36.9672a3 \end{align}

scope=row 82Gyrate bidiminished rhombicosidodecahedron509042

Cs

of order 2

\begin{align} A&=

5
2

\left(8+\sqrt{3}+2\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &56.9233a2\\ V&=

5
3

\left(11+5\sqrt{5}\right)a3\\ &36.9672a3 \end{align}

scope=row 83Tridiminished rhombicosidodecahedron457532

C3v

of order 6

\begin{align} A&=

1
4

\left(60+5\sqrt{3}+30\sqrt{5+2\sqrt{5}}+9\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &55.732a2\\ V&=\left(

35+
2
23\sqrt{5
}\right)a^3 \\ &\approx 34.6432a^3\end
scope=row 84Snub disphenoid81812

D2d

of order 8

\begin{align} A&=3\sqrt{3}a2\\ &5.1962a2\\ V&0.8595a3 \end{align}

scope=row 85Snub square antiprism164026

D4d

of order 16

\begin{align} A&=2\left(1+3\sqrt{3}\right)a2\\ &12.3923a2\\ V&3.6012a3 \end{align}

scope=row 86Sphenocorona102214

C2v

of order 4

\begin{align} A&=(2+3\sqrt{3})a2\\ &7.1962a2\\ V&=

1
2

a3\sqrt{1+3\sqrt{

3
2
}+\sqrt} \\ &\approx 1.5154a^3\end
scope=row 87Augmented sphenocorona112617

Cs

of order 2

\begin{align} A&=(1+4\sqrt{3})a2\\ &7.9282a2\\ V&=

1
2

a3\sqrt{1+3\sqrt{

3
2
} + \sqrt}+\frac \\ &\approx 1.7511a^3\end
scope=row 88Sphenomegacorona122818

C2v

of order 4

\begin{align} A&=2\left(1+2\sqrt{3}\right)a2\\ &8.9282a2\\ V&1.9481a3 \end{align}

scope=row 89Hebesphenomegacorona143321

C2v

of order 4

\begin{align} A&=

3
2

\left(2+3\sqrt{3}\right)a2\\ &10.7942a2\\ V&2.9129a3 \end{align}

scope=row 90Disphenocingulum163824

D2d

of order 8

\begin{align} A&=(4+5\sqrt{3})a2\\ &12.6603a2\\ V&3.7776a3 \end{align}

scope=row 91Bilunabirotunda142614

D2h

of order 8

\begin{align} A&=\left(2+2\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &12.346a2\\ V&=

1
12

\left(17+9\sqrt{5}\right)a3\\ &3.0937a3 \end{align}

scope=row 92Triangular hebesphenorotunda183620

C3v

of order 6

\begin{align} A&=

1
4

\left(12+19\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ &16.3887a2\\ V&=\left(

5+
2
7\sqrt{5
}\right)a^3 \\ &\approx 5.1087a^3\end

Bibliography

External links