In geometry, polyhedra are three-dimensional objects where points are connected by lines to form polygons. The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. A polyhedron is considered to be convex if:
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal; examples include Platonic and Archimedean solids as well as prisms and antiprisms.The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92 such polyhedra in 1966. His conjecture that the list was complete and no other examples existed was proven by Russian-Israeli mathematician Victor Zalgaller (1920–2020) in 1969.
Some of the Johnson solids may be categorized as elementary polyhedra, meaning they cannot be separated by a plane to create two small convex polyhedra with regular faces. The Johnson solids satisfying this criteria are the first six—equilateral square pyramid, pentagonal pyramid, triangular cupola, square cupola, pentagonal cupola, and pentagonal rotunda. The criteria is also satisfied by eleven other Johnson solids, specifically the tridiminished icosahedron, parabidiminished rhombicosidodecahedron, tridiminished rhombicosidodecahedron, snub disphenoid, snub square antiprism, sphenocorona, sphenomegacorona, hebesphenomegacorona, disphenocingulum, bilunabirotunda, and triangular hebesphenorotunda. The rest of the Johnson solids are not elementary, and they are constructed using the first six Johnson solids together with Platonic and Archimedean solids in various processes. Augmentation involves attaching the Johnson solids onto one or more faces of polyhedra, while elongation or gyroelongation involve joining them onto the bases of a prism or antiprism, respectively. Some others are constructed by diminishment, the removal of one of the first six solids from one or more of a polyhedron's faces.
The following table contains the 92 Johnson solids, with edge length
a
Jn
A
V
Cn
n
Dn
2n
Cn
2n
Dn
4n
Dn
4n
Cn
2n
C1
Cs
Solid name | scope=col | Image | scope=col | Vertices | scope=col | Edges | scope=col | Faces | scope=col | Symmetry group and its order | scope=col | Surface area and volume | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
scope=row | 1 | Equilateral square pyramid | 5 | 8 | 5 | C4v | \begin{align} A&=\left(1+\sqrt{3}\right)a2\\ & ≈ 2.7321a2\\ V&=
| ||||||||||||||
scope=row | 2 | Pentagonal pyramid | 6 | 10 | 6 | C5v | \begin{align} A&=
\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\\ & ≈ 3.8855a2\\ V&=\left(
| ||||||||||||||
scope=row | 3 | Triangular cupola | 9 | 15 | 8 | C3v | \begin{align} A&=\left(3+
| ||||||||||||||
scope=row | 4 | Square cupola | 12 | 20 | 10 | C4v | \begin{align} A&=\left(7+2\sqrt{2}+\sqrt{3}\right)a2\\ & ≈ 11.5605a2\\ V&=\left(1+
| ||||||||||||||
scope=row | 5 | Pentagonal cupola | 15 | 25 | 12 | C5v | \begin{align} A&=\left(
\left(20+5\sqrt{3}+\sqrt{5\left(145+62\sqrt{5}\right)}\right)\right)a2\\ & ≈ 16.5798a2\\ V&=\left(
\left(5+4\sqrt{5}\right)\right)a3\\ & ≈ 2.3241a3\end{align} | ||||||||||||||
scope=row | 6 | Pentagonal rotunda | 20 | 35 | 17 | C5v | \begin{align} A&=\left(
\left(5\sqrt{3}+\sqrt{10\left(65+29\sqrt{5}\right)}\right)\right)a2\\ & ≈ 22.3472a2\\ V&=\left(
\left(45+17\sqrt{5}\right)\right)a3\\ & ≈ 6.9178a3\end{align} | ||||||||||||||
scope=row | 7 | Elongated triangular pyramid | 7 | 12 | 7 | C3v | \begin{align} A&=\left(3+\sqrt{3}\right)a2\\ & ≈ 4.7321a2\\ V&=\left(
\left(\sqrt{2}+3\sqrt{3}\right)\right)a3\\ & ≈ 0.5509a3 \end{align} | ||||||||||||||
scope=row | 8 | Elongated square pyramid | 9 | 16 | 9 | C4v | \begin{align} A&=\left(5+\sqrt{3}\right)a2\\ & ≈ 6.7321a2\\ V&=\left(1+
| ||||||||||||||
scope=row | 9 | Elongated pentagonal pyramid | 11 | 20 | 11 | C5v | \begin{align} A&=
\sqrt{25+10\sqrt{5}}}{4}a2\\ & ≈ 8.8855a2\\ V&=\left(
6\sqrt{25+10\sqrt{5}}}{24}\right)a3\\ & ≈ 2.022a3\end{align} | ||||||||||||||
scope=row | 10 | Gyroelongated square pyramid | 9 | 20 | 13 | C4v | \begin{align} A&=(1+3\sqrt{3})a2\\ & ≈ 6.1962a2\\ V&=
\left(\sqrt{2}+2\sqrt{4+3\sqrt{2}}\right)a3\\ & ≈ 1.1927a3 \end{align} | ||||||||||||||
scope=row | 11 | Gyroelongated pentagonal pyramid | 11 | 25 | 16 | C5v | \begin{align} A&=
\left(15\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 8.2157a2\\ V&=
\left(25+9\sqrt{5}\right)a3\\ & ≈ 1.8802a3 \end{align} | ||||||||||||||
scope=row | 12 | Triangular bipyramid | 5 | 9 | 6 | D3h | \begin{align} A&=
| ||||||||||||||
scope=row | 13 | Pentagonal bipyramid | 7 | 15 | 10 | D5h | \begin{align} A&=
| ||||||||||||||
scope=row | 14 | Elongated triangular bipyramid | 8 | 15 | 9 | D3h | \begin{align} A&=
\left(2+\sqrt{3}\right)a2\\ & ≈ 5.5981a2\\ V&=
\left(2\sqrt{2}+3\sqrt{3}\right)a3\\ & ≈ 0.6687a3 \end{align} | ||||||||||||||
scope=row | 15 | Elongated square bipyramid | 10 | 20 | 12 | D4h | \begin{align} A&=2\left(2+\sqrt{3}\right)a2\\ & ≈ 7.4641a2\\ V&=
\left(3+\sqrt{2}\right)a3\\ & ≈ 1.4714a3 \end{align} | ||||||||||||||
scope=row | 16 | Elongated pentagonal bipyramid | 12 | 25 | 15 | D5h | \begin{align} A&=
\left(2+\sqrt{3}\right)a2\\ & ≈ 9.3301a2\\ V&=
\left(5+\sqrt{5}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a3\\ & ≈ 2.3235a3 \end{align} | ||||||||||||||
scope=row | 17 | Gyroelongated square bipyramid | 10 | 24 | 16 | D4d | \begin{align} A&=4\sqrt{3}a2\\ & ≈ 6.9282a2\\ V&=
\left(\sqrt{2}+\sqrt{4+3\sqrt{2}}\right)a3\\ & ≈ 1.4284a3 \end{align} | ||||||||||||||
scope=row | 18 | Elongated triangular cupola | 15 | 27 | 14 | C3v | \begin{align} A&=
\left(18+5\sqrt{3}\right)a2\\ & ≈ 13.3301a2\\ V&=
\left(5\sqrt{2}+9\sqrt{3}\right)a3\\ & ≈ 3.7766a3 \end{align} | ||||||||||||||
scope=row | 19 | Elongated square cupola | 20 | 36 | 18 | C4v | \begin{align} A&=(15+2\sqrt{2}+\sqrt{3})a2\\ & ≈ 19.5605a2\\ V&=\left(3+
| ||||||||||||||
scope=row | 20 | Elongated pentagonal cupola | 25 | 45 | 22 | C5v | \begin{align} A&=
\left(60+5\sqrt{3}+10\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 26.5798a2\\ V&=
\left(5+4\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ & ≈ 10.0183a3 \end{align} | ||||||||||||||
scope=row | 21 | Elongated pentagonal rotunda | 30 | 55 | 27 | C5v | \begin{align} A&=
a2\left(20+5\sqrt{3}+5\sqrt{5+2\sqrt{5}}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)\\ & ≈ 32.3472a2\\ V&=
a3\left(45+17\sqrt{5}+30\sqrt{5+2\sqrt{5}}\right)\\ & ≈ 14.612a3 \end{align} | ||||||||||||||
scope=row | 22 | Gyroelongated triangular cupola | 15 | 33 | 20 | C3v | \begin{align} A&=
\left(6+11\sqrt{3}\right)a2\\ & ≈ 12.5263a2\\ V&=
+18\sqrt{3}+30\sqrt{1+\sqrt{3}}}a3\\ & ≈ 3.5161a3 \end{align} | ||||||||||||||
scope=row | 23 | Gyroelongated square cupola | 20 | 44 | 26 | C4v | \begin{align} A&=(7+2\sqrt{2}+5\sqrt{3})a2\\ & ≈ 18.4887a2\\ V&=\left(1+
\sqrt{2}+
\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right)a3\\ & ≈ 6.2108a3 \end{align} | ||||||||||||||
scope=row | 24 | Gyroelongated pentagonal cupola | 25 | 55 | 32 | C5v | \begin{align} A&=
\left(20+25\sqrt{3}+10\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 25.2400a2\\ V&=\left(
\sqrt{5}+
\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ & ≈ 9.0733a3 \end{align} | ||||||||||||||
scope=row | 25 | Gyroelongated pentagonal rotunda | 30 | 65 | 37 | C5v | \begin{align} A&=
\left(15\sqrt{3}+\left(5+3\sqrt{5}\right)\sqrt{5+2\sqrt{5}}\right)a2\\ & ≈ 31.0075a2\\ V&=\left(
\sqrt{5}+
\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ & ≈ 13.6671a3 \end{align} | ||||||||||||||
scope=row | 26 | Gyrobifastigium | 8 | 14 | 8 | D2d | \begin{align} A&=\left(4+\sqrt{3}\right)a2\\ & ≈ 5.7321a2\\ V&=\left(
| ||||||||||||||
scope=row | 27 | Triangular orthobicupola | 12 | 24 | 14 | D3h | \begin{align} A&=2\left(3+\sqrt{3}\right)a2\\ & ≈ 9.4641a2\\ V&=
| ||||||||||||||
scope=row | 28 | Square orthobicupola | 16 | 32 | 18 | D4h | \begin{align} A&=2(5+\sqrt{3})a2\\ & ≈ 13.4641a2\\ V&=\left(2+
| ||||||||||||||
scope=row | 29 | Square gyrobicupola | 16 | 32 | 18 | D4d | \begin{align} A&=2(5+\sqrt{3})a2\\ & ≈ 13.4641a2\\ V&=\left(2+
| ||||||||||||||
scope=row | 30 | Pentagonal orthobicupola | 20 | 40 | 22 | D5h | \begin{align} A&=\left(10+\sqrt{
\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 17.7711a2\\ V&=
\left(5+4\sqrt{5}\right)a3\\ & ≈ 4.6481a3 \end{align} | ||||||||||||||
scope=row | 31 | Pentagonal gyrobicupola | 20 | 40 | 22 | D5d | \begin{align} A&=\left(10+\sqrt{
\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 17.7711a2\\ V&=
\left(5+4\sqrt{5}\right)a3\\ & ≈ 4.6481a3 \end{align} | ||||||||||||||
scope=row | 32 | Pentagonal orthocupolarotunda | 25 | 50 | 27 | C5v | \begin{align} A&=\left(5+
\sqrt{1900+490\sqrt{5}+210\sqrt{75+30\sqrt{5}}}\right)a2\\ & ≈ 23.5385a2\\ V&=
\left(11+5\sqrt{5}\right)a3\\ & ≈ 9.2418a3 \end{align} | ||||||||||||||
scope=row | 33 | Pentagonal gyrocupolarotunda | 25 | 50 | 27 | C5v | \begin{align} A&=\left(5+
\sqrt{25+10\sqrt{5}}\right)a2\\ & ≈ 23.5385a2\\ V&=
\left(11+5\sqrt{5}\right)a3\\ & ≈ 9.2418a3 \end{align} | ||||||||||||||
scope=row | 34 | Pentagonal orthobirotunda | 30 | 60 | 32 | D5h | \begin{align} A&=\left((5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 29.306a2\\ V&=
(45+17\sqrt{5})a3\\ & ≈ 13.8355a3 \end{align} | ||||||||||||||
scope=row | 35 | Elongated triangular orthobicupola | 18 | 36 | 20 | D3h | \begin{align} A&=2(6+\sqrt{3})a2\\ & ≈ 15.4641a2\\ V&=\left(
| ||||||||||||||
scope=row | 36 | Elongated triangular gyrobicupola | 18 | 36 | 20 | D3d | \begin{align} A&=2(6+\sqrt{3})a2\\ & ≈ 15.4641a2\\ V&=\left(
| ||||||||||||||
scope=row | 37 | Elongated square gyrobicupola | 24 | 48 | 26 | D4d | \begin{align} A&=2(9+\sqrt{3})a2\\ & ≈ 21.4641a2\\ V&=\left(4+
| ||||||||||||||
scope=row | 38 | Elongated pentagonal orthobicupola | 30 | 60 | 32 | D5h | \begin{align} A&=\left(20+\sqrt{
\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 27.7711a2\\ V&=
\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ & ≈ 12.3423a3 \end{align} | ||||||||||||||
scope=row | 39 | Elongated pentagonal gyrobicupola | 30 | 60 | 32 | D5d | \begin{align} A&=\left(20+\sqrt{
\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 27.7711a2\\ V&=
\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ & ≈ 12.3423a3 \end{align} | ||||||||||||||
scope=row | 40 | Elongated pentagonal orthocupolarotunda | 35 | 70 | 37 | C5v | \begin{align} A&=
\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 33.5385a2\\ V&=
\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a3\\ & ≈ 16.936a3 \end{align} | ||||||||||||||
scope=row | 41 | Elongated pentagonal gyrocupolarotunda | 35 | 70 | 37 | C5v | \begin{align} A&=
\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 33.5385a2\\ V&=
\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a3\\ & ≈ 16.936a3 \end{align} | ||||||||||||||
scope=row | 42 | Elongated pentagonal orthobirotunda | 40 | 80 | 42 | D5h | \begin{align} A&=\left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 39.306a2\\ V&=
\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ & ≈ 21.5297a3 \end{align} | ||||||||||||||
scope=row | 43 | Elongated pentagonal gyrobirotunda | 40 | 80 | 42 | D5d | \begin{align} A&=\left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a2\\ & ≈ 39.306a2\\ V&=
\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a3\\ & ≈ 21.5297a3 \end{align} | ||||||||||||||
scope=row | 44 | Gyroelongated triangular bicupola | 18 | 42 | 26 | D3 | \begin{align} A&=\left(6+5\sqrt{3}\right)a2\\ & ≈ 14.6603a2\\ V&=\sqrt{2}\left(
+\sqrt{1+\sqrt{3}}\right)a3\\ & ≈ 4.6946a3 \end{align} | ||||||||||||||
scope=row | 45 | Gyroelongated square bicupola | 24 | 56 | 34 | D4 | \begin{align} A&=\left(10+6\sqrt{3}\right)a2\\ & ≈ 20.3923a2\\ V&=\left(2+
\sqrt{2}+
\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right)a3\\ & ≈ 8.1536a3 \end{align} | ||||||||||||||
scope=row | 46 | Gyroelongated pentagonal bicupola | 30 | 70 | 42 | D5 | \begin{align} A&=
\left(20+15\sqrt{3}+\sqrt{25+10\sqrt{5}}\right)a2\\ & ≈ 26.4313a2\\ V&=\left(
\sqrt{5}+
\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ & ≈ 11.3974a3 \end{align} | ||||||||||||||
scope=row | 47 | Gyroelongated pentagonal cupolarotunda | 35 | 80 | 47 | C5 | \begin{align} A&=
\left(20+35\sqrt{3}+7\sqrt{25+10\sqrt{5}}\right)a2\\ & ≈ 32.1988a2\\ V&=\left(
\sqrt{5}+
\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ & ≈ 15.9911a3 \end{align} | ||||||||||||||
scope=row | 48 | Gyroelongated pentagonal birotunda | 40 | 90 | 52 | D5 | \begin{align} A&=\left(10\sqrt{3}+3\sqrt{25+10\sqrt{5}}\right)a2\\ & ≈ 37.9662a2\\ V&=\left(
\sqrt{5}+
\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right)a3\\ & ≈ 20.5848a3 \end{align} | ||||||||||||||
scope=row | 49 | Augmented triangular prism | 7 | 13 | 8 | C2v | \begin{align} A&=
(4+3\sqrt{3})a2\\ & ≈ 4.5981a2\\ V&=
(2\sqrt{2}+3\sqrt{3})a3\\ & ≈ 0.6687a3 \end{align} | ||||||||||||||
scope=row | 50 | Biaugmented triangular prism | 8 | 17 | 11 | C2v | \begin{align} A&=
(2+5\sqrt{3})a2\\ & ≈ 5.3301a2\\ V&=\sqrt{
+
| ||||||||||||||
scope=row | 51 | Triaugmented triangular prism | 9 | 21 | 14 | D3h | \begin{align} A&=
| ||||||||||||||
scope=row | 52 | Augmented pentagonal prism | 11 | 19 | 10 | C2v | \begin{align} A&=
\left(8+2\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 9.173a2\\ V&=
\sqrt{233+90\sqrt{5}+12\sqrt{50+20\sqrt{5}}}a3\\ & ≈ 1.9562a3 \end{align} | ||||||||||||||
scope=row | 53 | Biaugmented pentagonal prism | 12 | 23 | 13 | C2v | \begin{align} A&=
a2\left(6+4\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)\\ & ≈ 9.9051a2\\ V&=
a3\sqrt{257+90\sqrt{5}+24\sqrt{50+20\sqrt{5}}}\\ & ≈ 2.1919a3 \end{align} | ||||||||||||||
scope=row | 54 | Augmented hexagonal prism | 13 | 22 | 11 | C2v | \begin{align} A&=(5+4\sqrt{3})a2\\ & ≈ 11.9282a2\\ V&=
\left(\sqrt{2}+9\sqrt{3}\right)a3\\ & ≈ 2.8338a3 \end{align} | ||||||||||||||
scope=row | 55 | Parabiaugmented hexagonal prism | 14 | 26 | 14 | D2h | \begin{align} A&=(4+5\sqrt{3})a2\\ & ≈ 12.6603a2\\ V&=
\left(2\sqrt{2}+9\sqrt{3}\right)a3\\ & ≈ 3.0695a3 \end{align} | ||||||||||||||
scope=row | 56 | Metabiaugmented hexagonal prism | 14 | 26 | 14 | C2v | \begin{align} A&=(4+5\sqrt{3})a2\\ & ≈ 12.6603a2\\ V&=
\left(2\sqrt{2}+9\sqrt{3}\right)a3\\ & ≈ 3.0695a3 \end{align} | ||||||||||||||
scope=row | 57 | Triaugmented hexagonal prism | 15 | 30 | 17 | D3h | \begin{align} A&=3\left(1+2\sqrt{3}\right)a2\\ & ≈ 13.3923a2\\ V&=\left(
| ||||||||||||||
scope=row | 58 | Augmented dodecahedron | 21 | 35 | 16 | C5v | \begin{align} A&=
\left(5\sqrt{3}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 21.0903a2\\ V&=
\left(95+43\sqrt{5}\right)a3\\ & ≈ 7.9646a3 \end{align} | ||||||||||||||
scope=row | 59 | Parabiaugmented dodecahedron | 22 | 40 | 20 | D5d | \begin{align} A&=
\left(\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 21.5349a2\\ V&=
\left(25+11\sqrt{5}\right)a3\\ & ≈ 8.2661a3 \end{align} | ||||||||||||||
scope=row | 60 | Metabiaugmented dodecahedron | 22 | 40 | 20 | C2v | \begin{align} A&=
\left(\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 21.5349a2\\ V&=
\left(25+11\sqrt{5}\right)a3\\ & ≈ 8.2661a3 \end{align} | ||||||||||||||
scope=row | 61 | Triaugmented dodecahedron | 23 | 45 | 24 | C3v | \begin{align} A&=
\left(5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 21.9795a2\\ V&=
\left(7+3\sqrt{5}\right)a3\\ & ≈ 8.5676a3 \end{align} | ||||||||||||||
scope=row | 62 | Metabidiminished icosahedron | 10 | 20 | 12 | C2v | \begin{align} A&=
\left(5\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 7.7711a2\\ V&=
\left(5+2\sqrt{5}\right)a3\\ & ≈ 1.5787a3 \end{align} | ||||||||||||||
scope=row | 63 | Tridiminished icosahedron | 9 | 15 | 8 | C3v | \begin{align} A&=
\left(5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 7.3265a2\\ V&=\left(
| ||||||||||||||
scope=row | 64 | Augmented tridiminished icosahedron | 10 | 18 | 10 | C3v | \begin{align} A&=
\left(7\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 8.1925a2\\ V&=
\left(15+2\sqrt{2}+7\sqrt{5}\right)a3\\ & ≈ 1.395a3 \end{align} | ||||||||||||||
scope=row | 65 | Augmented truncated tetrahedron | 15 | 27 | 14 | C3v | \begin{align} A&=
\left(6+13\sqrt{3}\right)a2\\ & ≈ 14.2583a2\\ V&=
| ||||||||||||||
scope=row | 66 | Augmented truncated cube | 28 | 48 | 22 | C4v | \begin{align} A&=(15+10\sqrt{2}+3\sqrt{3})a2\\ & ≈ 34.3383a2\\ V&=\left(8+
| ||||||||||||||
scope=row | 67 | Biaugmented truncated cube | 32 | 60 | 30 | D4h | \begin{align} A&=2\left(9+4\sqrt{2}+2\sqrt{3}\right)a2\\ & ≈ 36.2419a2\\ V&=(9+6\sqrt{2})a3\\ & ≈ 17.4853a3 \end{align} | ||||||||||||||
scope=row | 68 | Augmented truncated dodecahedron | 65 | 105 | 42 | C5v | \begin{align} A&=
\left(20+25\sqrt{3}+110\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 102.1821a2\\ V&=\left(
| ||||||||||||||
scope=row | 69 | Parabiaugmented truncated dodecahedron | 70 | 120 | 52 | D5d | \begin{align} A&=
\left(20+15\sqrt{3}+50\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 103.3734a2\\ V&=
\left(515+251\sqrt{5}\right)a3\\ & ≈ 89.6878a3 \end{align} | ||||||||||||||
scope=row | 70 | Metabiaugmented truncated dodecahedron | 70 | 120 | 52 | C2v | \begin{align} A&=
\left(20+15\sqrt{3}+50\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 103.3734a2\\ V&=
\left(515+251\sqrt{5}\right)a3\\ & ≈ 89.6878a3 \end{align} | ||||||||||||||
scope=row | 71 | Triaugmented truncated dodecahedron | 75 | 135 | 62 | C3v | \begin{align} A&=
\left(60+35\sqrt{3}+90\sqrt{5+2\sqrt{5}}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 104.5648a2\\ V&=
\left(75+37\sqrt{5}\right)a3\\ & ≈ 92.0118a3 \end{align} | ||||||||||||||
scope=row | 72 | Gyrate rhombicosidodecahedron | 60 | 120 | 62 | C5v | \begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 59.306a2\\ V&=\left(20+
| ||||||||||||||
scope=row | 73 | Parabigyrate rhombicosidodecahedron | 60 | 120 | 62 | D5d | \begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 59.306a2\\ V&=\left(20+
| ||||||||||||||
scope=row | 74 | Metabigyrate rhombicosidodecahedron | 60 | 120 | 62 | C2v | \begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 59.306a2\\ V&=\left(20+
| ||||||||||||||
scope=row | 75 | Trigyrate rhombicosidodecahedron | 60 | 120 | 62 | C3v | \begin{align} A&=\left(30+5\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 59.306a2\\ V&=\left(20+
| ||||||||||||||
scope=row | 76 | Diminished rhombicosidodecahedron | 55 | 105 | 52 | C5v | \begin{align} A&=
\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 58.1147a2\\ V&=\left(
+9\sqrt{5}\right)a3\\ & ≈ 39.2913a3 \end{align} | ||||||||||||||
scope=row | 77 | Paragyrate diminished rhombicosidodecahedron | 55 | 105 | 52 | C5v | \begin{align} A&=
\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 58.1147a2\\ V&=\left(
+9\sqrt{5}\right)a3\\ & ≈ 39.2913a3 \end{align} | ||||||||||||||
scope=row | 78 | Metagyrate diminished rhombicosidodecahedron | 55 | 105 | 52 | Cs | \begin{align} A&=
\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 58.1147a2\\ V&=\left(
+9\sqrt{5}\right)a3\\ & ≈ 39.2913a3 \end{align} | ||||||||||||||
scope=row | 79 | Bigyrate diminished rhombicosidodecahedron | 55 | 105 | 52 | Cs | \begin{align} A&=
\left(100+15\sqrt{3}+10\sqrt{5+2\sqrt{5}}+11\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 58.1147a2\\ V&=\left(
+9\sqrt{5}\right)a3\\ & ≈ 39.2913a3 \end{align} | ||||||||||||||
scope=row | 80 | Parabidiminished rhombicosidodecahedron | 50 | 90 | 42 | D5d | \begin{align} A&=
\left(8+\sqrt{3}+2\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 56.9233a2\\ V&=
\left(11+5\sqrt{5}\right)a3\\ & ≈ 36.9672a3 \end{align} | ||||||||||||||
scope=row | 81 | Metabidiminished rhombicosidodecahedron | 50 | 90 | 42 | C2v | \begin{align} A&=
\left(8+\sqrt{3}+2\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 56.9233a2\\ V&=
\left(11+5\sqrt{5}\right)a3\\ & ≈ 36.9672a3 \end{align} | ||||||||||||||
scope=row | 82 | Gyrate bidiminished rhombicosidodecahedron | 50 | 90 | 42 | Cs | \begin{align} A&=
\left(8+\sqrt{3}+2\sqrt{5+2\sqrt{5}}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 56.9233a2\\ V&=
\left(11+5\sqrt{5}\right)a3\\ & ≈ 36.9672a3 \end{align} | ||||||||||||||
scope=row | 83 | Tridiminished rhombicosidodecahedron | 45 | 75 | 32 | C3v | \begin{align} A&=
\left(60+5\sqrt{3}+30\sqrt{5+2\sqrt{5}}+9\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 55.732a2\\ V&=\left(
| ||||||||||||||
scope=row | 84 | Snub disphenoid | 8 | 18 | 12 | D2d | \begin{align} A&=3\sqrt{3}a2\\ & ≈ 5.1962a2\\ V& ≈ 0.8595a3 \end{align} | ||||||||||||||
scope=row | 85 | Snub square antiprism | 16 | 40 | 26 | D4d | \begin{align} A&=2\left(1+3\sqrt{3}\right)a2\\ & ≈ 12.3923a2\\ V& ≈ 3.6012a3 \end{align} | ||||||||||||||
scope=row | 86 | Sphenocorona | 10 | 22 | 14 | C2v | \begin{align} A&=(2+3\sqrt{3})a2\\ & ≈ 7.1962a2\\ V&=
a3\sqrt{1+3\sqrt{
| ||||||||||||||
scope=row | 87 | Augmented sphenocorona | 11 | 26 | 17 | Cs | \begin{align} A&=(1+4\sqrt{3})a2\\ & ≈ 7.9282a2\\ V&=
a3\sqrt{1+3\sqrt{
| ||||||||||||||
scope=row | 88 | Sphenomegacorona | 12 | 28 | 18 | C2v | \begin{align} A&=2\left(1+2\sqrt{3}\right)a2\\ & ≈ 8.9282a2\\ V& ≈ 1.9481a3 \end{align} | ||||||||||||||
scope=row | 89 | Hebesphenomegacorona | 14 | 33 | 21 | C2v | \begin{align} A&=
\left(2+3\sqrt{3}\right)a2\\ & ≈ 10.7942a2\\ V& ≈ 2.9129a3 \end{align} | ||||||||||||||
scope=row | 90 | Disphenocingulum | 16 | 38 | 24 | D2d | \begin{align} A&=(4+5\sqrt{3})a2\\ & ≈ 12.6603a2\\ V& ≈ 3.7776a3 \end{align} | ||||||||||||||
scope=row | 91 | Bilunabirotunda | 14 | 26 | 14 | D2h | \begin{align} A&=\left(2+2\sqrt{3}+\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 12.346a2\\ V&=
\left(17+9\sqrt{5}\right)a3\\ & ≈ 3.0937a3 \end{align} | ||||||||||||||
scope=row | 92 | Triangular hebesphenorotunda | 18 | 36 | 20 | C3v | \begin{align} A&=
\left(12+19\sqrt{3}+3\sqrt{5\left(5+2\sqrt{5}\right)}\right)a2\\ & ≈ 16.3887a2\\ V&=\left(
|