In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.[1]
x2+y2=x,
l(x2+y2r){}2=x2-y2.
The lemniscate functions have periods related to a number called the lemniscate constant, the ratio of a lemniscate's perimeter to its diameter. This number is a quartic analog of the (quadratic), ratio of perimeter to diameter of a circle.
\{(1+i)\varpi,(1-i)\varpi\},
\operatorname{sl}z=\operatorname{sn}(z;i),
\operatorname{cl}z=\operatorname{cd}(z;i)
Similarly, the hyperbolic lemniscate sine and hyperbolic lemniscate cosine have a square period lattice with fundamental periods
l\{\sqrt2\varpi,\sqrt2\varpiir\}.
\wp(z;a,0)
The lemniscate functions and can be defined as the solution to the initial value problem:[5]
d | |
dz |
\operatorname{sl}z=l(1+\operatorname{sl}2zr)\operatorname{cl}z,
d | |
dz |
\operatorname{cl}z=-l(1+\operatorname{cl}2zr)\operatorname{sl}z, \operatorname{sl}0=0, \operatorname{cl}0=1,
or equivalently as the inverses of an elliptic integral, the Schwarz–Christoffel map from the complex unit disk to a square with corners
\{\tfrac12\varpi,\tfrac12\varpii,-\tfrac12\varpi,-\tfrac12\varpii\}\colon
z=
\operatorname{sl | ||
\int | z} | |
0 |
dt | |
\sqrt{1-t4 |
Beyond that square, the functions can be analytically continued to the whole complex plane by a series of reflections.
By comparison, the circular sine and cosine can be defined as the solution to the initial value problem:
d | |
dz |
\sinz=\cosz,
d | |
dz |
\cosz=-\sinz, \sin0=0, \cos0=1,
or as inverses of a map from the upper half-plane to a half-infinite strip with real part between
-\tfrac12\pi,\tfrac12\pi
z=
\sinz | |
\int | |
0 |
dt | |
\sqrt{1-t2 |
See main article: Lemniscate constant.
The lemniscate functions have minimal real period, minimal imaginary period and fundamental complex periods
(1+i)\varpi
(1-i)\varpi
\varpi=
| ||||
2\int | ||||
0 |
The lemniscate functions satisfy the basic relation
\operatorname{cl}z={\operatorname{sl}}l(\tfrac12\varpi-zr),
\cosz={\sin}l(\tfrac12\pi-zr).
The lemniscate constant is a close analog of the circle constant , and many identities involving have analogues involving, as identities involving the trigonometric functions have analogues involving the lemniscate functions. For example, Viète's formula for can be written:
An analogous formula for is:
The Machin formula for is and several similar formulas for can be developed using trigonometric angle sum identities, e.g. Euler's formula . Analogous formulas can be developed for, including the following found by Gauss:
\tfrac12\varpi=2\operatorname{arcsl}\tfrac12+\operatorname{arcsl}\tfrac7{23}.
The lemniscate and circle constants were found by Gauss to be related to each-other by the arithmetic-geometric mean :
The lemniscate functions and are even and odd functions, respectively,
\begin{aligned} \operatorname{cl}(-z)&=\operatorname{cl}z\\[6mu] \operatorname{sl}(-z)&=-\operatorname{sl}z \end{aligned}
At translations of
\tfrac12\varpi,
\tfrac12i\varpi
\begin{aligned} {\operatorname{cl}}l(z\pm\tfrac12\varpir)&=\mp\operatorname{sl}z,& {\operatorname{cl}}l(z\pm\tfrac12i\varpir)&=
\mpi | |
\operatorname{sl |
z}\\[6mu] {\operatorname{sl}}l(z\pm\tfrac12\varpir)&=\pm\operatorname{cl}z,&{\operatorname{sl}}l(z\pm\tfrac12i\varpir)&=
\pmi | |
\operatorname{cl |
z} \end{aligned}
Doubling these to translations by a unit-Gaussian-integer multiple of
\varpi
\pm\varpi
\pmi\varpi
\begin{aligned} \operatorname{cl}(z+\varpi)&=\operatorname{cl}(z+i\varpi)=-\operatorname{cl}z\\[4mu] \operatorname{sl}(z+\varpi)&=\operatorname{sl}(z+i\varpi)=-\operatorname{sl}z \end{aligned}
As a result, both functions are invariant under translation by an even-Gaussian-integer multiple of
\varpi
(a+bi)\varpi,
a+b=2k
\begin{aligned} {\operatorname{cl}}l(z+(1+i)\varpir)&={\operatorname{cl}}l(z+(1-i)\varpir)=\operatorname{cl}z\\[4mu] {\operatorname{sl}}l(z+(1+i)\varpir)&={\operatorname{sl}}l(z+(1-i)\varpir)=\operatorname{sl}z \end{aligned}
This makes them elliptic functions (doubly periodic meromorphic functions in the complex plane) with a diagonal square period lattice of fundamental periods
(1+i)\varpi
(1-i)\varpi
Reflections and quarter-turn rotations of lemniscate function arguments have simple expressions:
\begin{aligned} \operatorname{cl}\bar{z}&=\overline{\operatorname{cl}z}\\[6mu] \operatorname{sl}\bar{z}&=\overline{\operatorname{sl}z}\\[4mu] \operatorname{cl}iz&=
1 | |
\operatorname{cl |
z}\\[6mu] \operatorname{sl}iz&=i\operatorname{sl}z \end{aligned}
The function has simple zeros at Gaussian integer multiples of, complex numbers of the form
a\varpi+b\varpii
l(a+\tfrac12r)\varpi+l(b+\tfrac12r)\varpii
(-1)a-b+1i
\operatorname{cl}z={\operatorname{sl}}l(\tfrac12\varpi-zr)
l(a+\tfrac12r)\varpi+b\varpii
a\varpi+l(b+\tfrac12r)\varpii,
(-1)a-bi.
Also
\operatorname{sl}z=\operatorname{sl}w\leftrightarrowz=(-1)m+nw+(m+ni)\varpi
m,n\inZ
\operatorname{sl}((1\pmi)z)=(1\pmi)
\operatorname{sl | |
z}{\operatorname{sl}'z}. |
\operatorname{sl}((n+mi)z)
n+mi
\operatorname{sl}
Z[i]
There are also infinite series reflecting the distribution of the zeros and poles of :[10] [11]
1 | |
\operatorname{sl |
z}=\sum | |
(n,k)\inZ2 |
(-1)n+k | |
z+n\varpi+k\varpii |
\operatorname{sl}z=-i\sum | |
(n,k)\inZ2 |
(-1)n+k | |
z+(n+1/2)\varpi+(k+1/2)\varpii |
.
The lemniscate functions satisfy a Pythagorean-like identity:
\operatorname{cl2}z+\operatorname{sl2}z+\operatorname{cl2}z\operatorname{sl2}z=1
As a result, the parametric equation
(x,y)=(\operatorname{cl}t,\operatorname{sl}t)
x2+y2+x2y2=1.
This identity can alternately be rewritten:[12]
l(1+\operatorname{cl2}zr)l(1+\operatorname{sl2}zr)=2
\operatorname{cl2}z=
1-\operatorname{sl2 | |
z}{1 |
+\operatorname{sl2}z}, \operatorname{sl2}z=
1-\operatorname{cl2 | |
z}{1 |
+\operatorname{cl2}z}
Defining a tangent-sum operator as
a ⊕ bl{:=}\tan(\arctana+\arctanb)=
a+b | |
1-ab |
,
\operatorname{cl2}z ⊕ \operatorname{sl2}z=1.
The functions
\tilde{\operatorname{cl}}
\tilde{\operatorname{sl}}
x | |
\left(\int | |
0 |
x | |
\tilde{\operatorname{cl}}tdt\right) | |
0 |
\tilde{\operatorname{sl}}tdt\right)2=1.
The derivatives are as follows:
\begin{aligned} | d |
dz |
\operatorname{cl}z=\operatorname{cl'}z &=-l(1+\operatorname{cl2}zr)\operatorname{sl}z=-
2\operatorname{sl | |
z}{\operatorname{sl} |
2z+1}\\ \operatorname{cl'2}z&=1-\operatorname{cl4}z\\[5mu]
d | |
dz |
\operatorname{sl}z=\operatorname{sl'}z &=l(1+\operatorname{sl2}zr)\operatorname{cl}z=
2\operatorname{cl | |
z}{\operatorname{cl} |
2z+1}\\ \operatorname{sl'2}z&=1-\operatorname{sl4}z\end{aligned}
\begin{align} | d | \tilde{\operatorname{cl}}z&=-2\tilde{\operatorname{sl}}z\operatorname{cl}z- |
dz |
\tilde{\operatorname{sl | |
\frac\,\tilde\,z&=2\,\tilde\,z\,\operatornamez-\frac
\end
The second derivatives of lemniscate sine and lemniscate cosine are their negative duplicated cubes:
d2 | |
dz2 |
\operatorname{cl}z=-2\operatorname{cl3}z
d2 | |
dz2 |
\operatorname{sl}z=-2\operatorname{sl3}z
The lemniscate functions can be integrated using the inverse tangent function:
\begin{align}\int\operatorname{cl}zdz&=\arctan\operatorname{sl}z+C\\ \int\operatorname{sl}zdz&=-\arctan\operatorname{cl}z+
C\\
\int\tilde{\operatorname{cl}}z
|
Like the trigonometric functions, the lemniscate functions satisfy argument sum and difference identities. The original identity used by Fagnano for bisection of the lemniscate was:
\operatorname{sl}(u+v)=
\operatorname{sl | |
u\operatorname{sl'}v |
+\operatorname{sl}v\operatorname{sl'}u} {1+\operatorname{sl2}u\operatorname{sl2}v}
The derivative and Pythagorean-like identities can be used to rework the identity used by Fagano in terms of and . Defining a tangent-sum operator
a ⊕ bl{:=}\tan(\arctana+\arctanb)
a\ominusbl{:=}a ⊕ (-b),
\begin{aligned} \operatorname{cl}(u+v) &=\operatorname{cl}u\operatorname{cl}v\ominus\operatorname{sl}u\operatorname{sl}v =
\operatorname{cl | |
u |
\operatorname{cl}v-\operatorname{sl}u\operatorname{sl}v} {1+\operatorname{sl}u\operatorname{cl}u\operatorname{sl}v\operatorname{cl}v}\\[2mu] \operatorname{cl}(u-v) &=\operatorname{cl}u\operatorname{cl}v ⊕ \operatorname{sl}u\operatorname{sl}v\\[2mu] \operatorname{sl}(u+v) &=\operatorname{sl}u\operatorname{cl}v ⊕ \operatorname{cl}u\operatorname{sl}v =
\operatorname{sl | |
u |
\operatorname{cl}v+\operatorname{cl}u\operatorname{sl}v} {1-\operatorname{sl}u\operatorname{cl}u\operatorname{sl}v\operatorname{cl}v}\\[2mu] \operatorname{sl}(u-v) &=\operatorname{sl}u\operatorname{cl}v\ominus\operatorname{cl}u\operatorname{sl}v \end{aligned}
These resemble their trigonometric analogs:
\begin{aligned} \cos(u\pmv)&=\cosu\cosv\mp\sinu\sinv\\[6mu] \sin(u\pmv)&=\sinu\cosv\pm\cosu\sinv \end{aligned}
In particular, to compute the complex-valued functions in real components,
\begin{aligned} \operatorname{cl}(x+iy) &=
\operatorname{cl | |
x |
-i\operatorname{sl}x\operatorname{sl}y\operatorname{cl}y} {\operatorname{cl}y+i\operatorname{sl}x\operatorname{cl}x\operatorname{sl}y}\\[4mu] &=
\operatorname{cl | |
x\operatorname{cl}y\left(1 |
-\operatorname{sl}2x\operatorname{sl}2y\right)}{\operatorname{cl}2y+\operatorname{sl}2x\operatorname{cl}2x\operatorname{sl}2y} -i
\operatorname{sl | |
x\operatorname{sl}y\left(\operatorname{cl} |
2x+\operatorname{cl}2y\right)}{\operatorname{cl}2y+\operatorname{sl}2x\operatorname{cl}2x\operatorname{sl}2y} \\[12mu] \operatorname{sl}(x+iy) &=
\operatorname{sl | |
x |
+i\operatorname{cl}x\operatorname{sl}y\operatorname{cl}y} {\operatorname{cl}y-i\operatorname{sl}x\operatorname{cl}x\operatorname{sl}y}\\[4mu] &=
\operatorname{sl | |
x\operatorname{cl}y\left(1 |
-\operatorname{cl}2x\operatorname{sl}2y\right)}{\operatorname{cl}2y+\operatorname{sl}2x\operatorname{cl}2x\operatorname{sl}2y} +i
\operatorname{cl | |
x\operatorname{sl}y\left(\operatorname{sl} |
2x+\operatorname{cl}2y\right)}{\operatorname{cl}2y+\operatorname{sl}2x\operatorname{cl}2x\operatorname{sl}2y} \end{aligned}
Gauss discovered that
\operatorname{sl | |||
|
u,v\inC
Also
\operatorname{sl}(u+v)\operatorname{sl}(u-v)= | \operatorname{sl |
2u-\operatorname{sl} |
2v}{1+\operatorname{sl}2u\operatorname{sl}2v}
u,v\inC
\sin(u+v)\sin(u-v)=\sin2u-\sin2v.
Bisection formulas:
\operatorname{cl}2\tfrac12x=
1+\operatorname{cl | |
x |
\sqrt{1+\operatorname{sl}2x}}{\sqrt{1+\operatorname{sl}2x}+1}
\operatorname{sl}2\tfrac12x=
1-\operatorname{cl | |
x\sqrt{1+\operatorname{sl} |
2x}}{\sqrt{1+\operatorname{sl}2x}+1}
Duplication formulas:[14]
\operatorname{cl}2x=
-1+2\operatorname{cl | |
2x |
+\operatorname{cl}4x}{1+2\operatorname{cl}2x-\operatorname{cl}4x}
\operatorname{sl}2x=2\operatorname{sl}x\operatorname{cl}x
1+\operatorname{sl | |
2x}{1+\operatorname{sl} |
4x}
Triplication formulas:
\operatorname{cl}3x=
-3\operatorname{cl | |
x |
+6\operatorname{cl}5x+\operatorname{cl}9x}{1+6\operatorname{cl}4x-3\operatorname{cl}8x}
\operatorname{sl}3x=
\color{red | |
3 |
\color{black}{\operatorname{sl}x-}\color{green}{6}\color{black}{\operatorname{sl}5x-}\color{blue}{1}\color{black}{\operatorname{sl}9x}}{\color{blue}{1}\color{black}{+}\color{green}{6}\color{black}{\operatorname{sl}4x-}\color{red}{3}\color{black}{\operatorname{sl}8x}}
Note the "reverse symmetry" of the coefficients of numerator and denominator of
\operatorname{sl}3x
\operatorname{sl}\betax
\beta=m+ni
m,n\inZ
m+n
xP\beta
4)=\prod | |
(x | |
\gamma|\beta |
Λ\gamma(x)
Λ\beta(x)=\prod[\alpha]\in
x }(x-\operatorname{sl}\alpha\delta | |
/\betal{O}) | |
\beta) |
\delta\beta
\beta
\delta\beta\in(1/\beta)L
[\delta\beta]\in(1/\beta)L/L
(1/\beta)L/L
l{O}
\beta
2\varpi/\beta
(1+i)\varpi/\beta
Λ\beta(x)\inl{O}[x]
\beta
K
\Phik(x)=\prod
[a]\in(Z/kZ) x |
a). | |
(x-\zeta | |
k |
The
\beta
Λ\beta(x)
\operatorname{sl}\delta\beta
K[x]
\omega\beta=\operatorname{sl}(2\varpi/\beta)
\tilde{\omega}\beta=\operatorname{sl}((1+i)\varpi/\beta)
\omega5
\tilde{\omega}5
K[x]
16 | |
Λ | |
5(x)=x |
+52x12-26x8-12x4+1,
\omega5=\sqrt[4]{-13+6\sqrt{5}+2\sqrt{85-38\sqrt{5}}}
\tilde{\omega}5=\sqrt[4]{-13-6\sqrt{5}+2\sqrt{85+38\sqrt{5}}}
Λ-1+2i(x)=x4-1+2i
\omega-1+2i
\tilde{\omega}-1+2i
K[x].
If
p
\beta
\operatorname{deg}Λ\beta
2\prod | ||
=\beta | \left(1- | |
p|\beta |
1 | \right)\left(1- | |
p |
(-1)(p-1)/2 | |
p |
\right)
\operatorname{deg}\Phik=k\prodp|k\left(1-
1 | |
p |
\right).
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into parts of equal length, using only basic arithmetic and square roots, if and only if is of the form
n=
kp | |
2 | |
1p |
2 … pm
n | \operatorname{cl}n\varpi | \operatorname{sl}n\varpi | |
---|---|---|---|
1 | -1 | 0 | |
\tfrac{5}{6} | -\sqrt[4]{2\sqrt{3}-3} | \tfrac12l(\sqrt{3}+1-\sqrt[4]{12}r) | |
\tfrac{3}{4} | -\sqrt{\sqrt2-1} | \sqrt{\sqrt2-1} | |
\tfrac{2}{3} | -\tfrac12l(\sqrt{3}+1-\sqrt[4]{12}r) | \sqrt[4]{2\sqrt{3}-3} | |
\tfrac{1}{2} | 0 | 1 | |
\tfrac{1}{3} | \tfrac12l(\sqrt{3}+1-\sqrt[4]{12}r) | \sqrt[4]{2\sqrt{3}-3} | |
\tfrac{1}{4} | \sqrt{\sqrt2-1} | \sqrt{\sqrt2-1} | |
\tfrac{1}{6} | \sqrt[4]{2\sqrt{3}-3} | \tfrac12l(\sqrt{3}+1-\sqrt[4]{12}r) |
l{L}
Angular characterization: Given two points
A
B
B'
B
A
l{L}
P
|APB-APB'|
Focal characterization:
l{L}
F1=l({-\tfrac1\sqrt2},0r)
F2=l(\tfrac1\sqrt2,0r)
\tfrac12
Explicit coordinate characterization:
l{L}
r2=\cos2\theta
l(x2+y2r){}2=x2-y2.
The perimeter of
l{L}
2\varpi
The points on
l{L}
r
x2+y2=r2
x2-y2=r4
(x(r),y(r))=l(\sqrt{\tfrac12r2l(1+r2r)},\sqrt{\tfrac12r2l(1-r2r)}r).
Using this parametrization with
r\in[0,1]
l{L}
(x(r),y(r))
r | |
\begin{aligned} &\int | |
0 |
\sqrt{x'(t)2+y'(t)2}dt\\ & {}=
r | ||
\int | \sqrt{ | |
0 |
(1+2t2)2 | |
2(1+t2) |
+
(1-2t2)2 | |
2(1-t2) |
Likewise, the arc length from
(1,0)
(x(r),y(r))
1 | |
\begin{aligned} &\int | |
r |
\sqrt{x'(t)2+y'(t)2}dt\\ & {}=
1 | |
\int | |
r |
dt | |
\sqrt{1-t4 |
Or in the inverse direction, the lemniscate sine and cosine functions give the distance from the origin as functions of arc length from the origin and the point
(1,0)
Analogously, the circular sine and cosine functions relate the chord length to the arc length for the unit diameter circle with polar equation
r=\cos\theta
x2+y2=x,
(x(r),y(r))=l(r2,\sqrt{r2l(1-r2r)}r).
x2+y2=1
s
(1,0)
(x(s),y(s))=(\coss,\sins),
l{L}
s
(1,0)
(x(s),y(s))=\left( | \operatorname{cl |
s}{\sqrt{1+\operatorname{sl} |
2s}},
\operatorname{sl | |
s\operatorname{cl}s}{\sqrt{1+\operatorname{sl} |
2s}}\right)=\left(\tilde{\operatorname{cl}}s,\tilde{\operatorname{sl}}s\right).
The notation
\tilde{\operatorname{cl}},\tilde{\operatorname{sl}}
The lemniscate integral and lemniscate functions satisfy an argument duplication identity discovered by Fagnano in 1718:
z | |
\int | |
0 |
dt | |
\sqrt{1-t4 |
Later mathematicians generalized this result. Analogously to the constructible polygons in the circle, the lemniscate can be divided into sections of equal arc length using only straightedge and compass if and only if is of the form
n=
kp | |
2 | |
1p |
2 … pm
\varphi(n)
\varphi
Let
rj=\operatorname{sl}\dfrac{2j\varpi}{n}
l{L}
\left(rj\sqrt{\tfrac12l(1+r
2r)}, (-1) | |
j |
\left\lfloor
2r)}\right), | |
\sqrt{\tfrac12r | |
j |
j\in\{1,2,\ldots,n\}
where
\lfloor ⋅ \rfloor
\operatorname{sl}\dfrac{2\varpi}{n}
The inverse lemniscate sine also describes the arc length relative to the coordinate of the rectangular elastica.[26] This curve has coordinate and arc length:
y=
1 | |
\int | |
x |
t2dt | |
\sqrt{1-t4 |
The rectangular elastica solves a problem posed by Jacob Bernoulli, in 1691, to describe the shape of an idealized flexible rod fixed in a vertical orientation at the bottom end, and pulled down by a weight from the far end until it has been bent horizontal. Bernoulli's proposed solution established Euler–Bernoulli beam theory, further developed by Euler in the 18th century.
Let
C
x2+2y2=1
D
C
x2+y2=1
r
A
C
\varphi
BAC
B=(1,0)
BD
u
\varphi | |
u=\int | |
0 |
r(\theta)
\varphi | |
d\theta=\int | |
0 |
d\theta | |
\sqrt{1+\sin2\theta |
E
D
F
C
\operatorname{cl}u=\overline{AF}, \operatorname{sl}u=\overline{DE},
\tilde{\operatorname{cl}}u=\overline{AF}\overline{AC}, \tilde{\operatorname{sl}}u=\overline{AF}\overline{FC}.
The power series expansion of the lemniscate sine at the origin is[27]
infty | |
\operatorname{sl}z=\sum | |
n=0 |
an
| |||||
z | +3024 |
z9 | -4390848 | |
9! |
z13 | |
13! |
+ … , |z|<\tfrac{\varpi}{\sqrt{2}}
an
n\not\equiv1\pmod4\impliesan=0,
a1=1,\foralln\inN0:an+2=-
2 | |
(n+1)(n+2) |
\sumi+j+k=naiajak
where
i+j+k=n
n
a13
13-2=11
11=9+1+1=1+9+1=1+1+9
11=5+5+1=5+1+5=1+5+5
a13=-\tfrac{2}{12 ⋅ 13}(a9a1a1+a1a9a1+a1a1a9+a5a5a1+a5a1a5+a1a5a5)=-\tfrac{11}{15600}.
The expansion can be equivalently written as[28]
infty | |
\operatorname{sl}z=\sum | |
n=0 |
p2n
z4n+1 | |
(4n+1)! |
, \left|z\right|<
\varpi | |
\sqrt{2 |
pn+2
n\binom{2n+2}{2j+2}p | |
=-12\sum | |
n-j |
j | |
\sum | |
k=0 |
\binom{2j+1}{2k+1}pkpj-k, p0=1,p1=0.
The power series expansion of
\tilde{\operatorname{sl}}
infty | |
\tilde{\operatorname{sl}}z=\sum | |
n=0 |
\alphan
| |||||
z | +153 |
z5 | -4977 | |
5! |
z7 | |
7! |
+ … , \left|z\right|<
\varpi | |
2 |
\alphan=0
n
\alpha | ||||
|
(-1)(n-1)/2 | |
n! |
infty | |
\sum | |
k=1 |
(2k\pi/\varpi)n+1 | |
\coshk\pi |
, \left|\alphan\right|\sim2n+5/2
n+1 | |
\varpin+2 |
n
The expansion can be equivalently written as[29]
\tilde{\operatorname{sl}}
infty | |
z=\sum | |
n=0 |
(-1)n | |
2n+1 |
n | |
\left(\sum | |
l=0 |
2l\binom{2n+2}{2l+1}sltn-l\right)
z2n+1 | |
(2n+1)! |
, \left|z\right|<
\varpi | |
2 |
sn+2=3sn+1+24
n | |
\sum | |
j=0 |
\binom{2n+2}{2j+2}sn-j
j | |
\sum | |
k=0 |
\binom{2j+1}{2k+1}sksj-k, s0=1,s1=3,
tn+2=3tn+1+3
n | |
\sum | |
j=0 |
\binom{2n+2}{2j+2}tn-j
j | |
\sum | |
k=0 |
\binom{2j+1}{2k+1}tktj-k, t0=1,t1=3.
For the lemniscate cosine,[30]
infty | |
\operatorname{cl}{z}=1-\sum | |
n=0 |
(-1)n
n | |
\left(\sum | |
l=0 |
2l\binom{2n+2}{2l+1}qlrn-l\right)
z2n+2 | =1-2 | |
(2n+2)! |
z2 | +12 | |
2! |
z4 | -216 | |
4! |
z6 | |
6! |
+ … , \left|z\right|<
\varpi | |
2 |
,
infty | |
\tilde{\operatorname{cl}}z=\sum | |
n=0 |
(-1)n2nqn
z2n | =1-3 | |
(2n)! |
z2 | +33 | |
2! |
z4 | -819 | |
4! |
z6 | |
6! |
+ … , \left|z\right|<
\varpi | |
2 |
rn+2=3
n | |
\sum | |
j=0 |
\binom{2n+2}{2j+2}rn-j
j | |
\sum | |
k=0 |
\binom{2j+1}{2k+1}rkrj-k, r0=1,r1=0,
qn+2=\tfrac{3}{2}qn+1+6
n | |
\sum | |
j=0 |
\binom{2n+2}{2j+2}qn-j
j | |
\sum | |
k=0 |
\binom{2j+1}{2k+1}qkqj-k, q0=1,q1=\tfrac{3}{2}.
Ramanujan's famous cos/cosh identity states that if
R(s)= | \pi |
\varpi\sqrt{2 |
R(s)-2+R(is)-2=2, \left|\operatorname{Re}s\right|<
\varpi | |
2 |
,\left|\operatorname{Im}s\right|<
\varpi | |
2 |
.
R(s)
\tilde{\operatorname{sl}}s=- | d |
ds |
R(s) \left|\operatorname{Im}s\right|<
\varpi | |
2 |
\tilde{\operatorname{cl}}s= | d |
ds |
\sqrt{1-R(s)2}, \left|\operatorname{Re}s-
\varpi | \right|< | |
2 |
\varpi | ,\left|\operatorname{Im}s\right|< | |
2 |
\varpi | |
2 |
R(s)= | 1 |
\sqrt{1+\operatorname{sl |
2s}}, \left|\operatorname{Im}s\right |<
\varpi | |
2 |
.
For
z\inC\setminus\{0\}
infty | |
\int | |
0 |
e-tz\sqrt{2
infty | |
\int | |
0 |
e-tz\sqrt{2
Several methods of computing
\operatorname{sl}x
\pix=\varpi\tilde{x}
\operatorname{sl}(\varpi\tilde{x}/\pi).
A hyperbolic series method:[34] [35]
\operatorname{sl}\left( | \varpi | x\right)= |
\pi |
\pi | |
\varpi |
\sumn\inZ
(-1)n | |
\cosh(x-(n+1/2)\pi) |
, x\inC
1 | |
\operatorname{sl |
(\varpix/\pi)}=
\pi\varpi | |
\sum |
n\inZ
(-1)n | {\left(x-n\pi\right)}}= | |
{\sinh |
\pi\varpi | |
\sum |
n\inZ
(-1)n | |
\sin(x-n\pii) |
, x\inC
Fourier series method:[36]
\operatorname{sl}l( | \varpi | xr)= |
\pi |
2\pi | |
\varpi |
infty | |
\sum | |
n=0 |
(-1)n\sin((2n+1)x) | |
\cosh((n+1/2)\pi) |
, \left|\operatorname{Im}x\right|<
\pi | |
2 |
\operatorname{cl}\left( | \varpi | x\right)= |
\pi |
2\pi | |
\varpi |
infty | |
\sum | |
n=0 |
\cos((2n+1)x) | , \left|\operatorname{Im}x\right|< | |
\cosh((n+1/2)\pi) |
\pi | |
2 |
1 | |
\operatorname{sl |
(\varpix/\pi)}=
\pi | \left( | |
\varpi |
1 | |
\sinx |
infty | |
-4\sum | |
n=0 |
\sin((2n+1)x) | |
e(2n+1)\pi+1 |
\right), \left|\operatorname{Im}x\right|<\pi
The lemniscate functions can be computed more rapidly by
\begin{align}\operatorname{sl}l( | \varpi\pi |
xr)& |
=
{\theta1 | |
\left(x,e-\pi\right) |
-\pi | |
\begin{aligned} \theta | |
1(x,e |
)&=\sumn\inZ(-1)n+1
-\pi(n+1/2+x/\pi)2 | |
e |
=\sumn\inZ(-1)n
-\pi(n+1/2)2 | |
e |
\sin
-\pi | |
((2n+1)x),\\ \theta | |
2(x,e |
)&=\sumn\inZ(-1)n
-\pi(n+x/\pi)2 | |
e |
=\sumn\inZ
-\pi(n+1/2)2 | |
e |
\cos
-\pi | |
((2n+1)x),\\ \theta | |
3(x,e |
)&=\sumn\inZ
-\pi(n+x/\pi)2 | |
e |
=\sumn\inZ
-\pin2 | |
e |
\cos
-\pi | |
2nx,\\ \theta | |
4(x,e |
)&=\sumn\inZ
-\pi(n+1/2+x/\pi)2 | |
e |
=\sumn\inZ(-1)n
-\pin2 | |
e |
\cos2nx\end{aligned}
are the Jacobi theta functions.[37]
Fourier series for the logarithm of the lemniscate sine:
ln\operatorname{sl}\left(
\varpi\pi | 2- | |
x\right)=ln |
\pi | |
4 |
+ln\sin
infty | |
x+2\sum | |
n=1 |
(-1)n\cos2nx | |
n(en\pi+(-1)n) |
, \left|\operatorname{Im}x\right|<
\pi | |
2 |
The following series identities were discovered by Ramanujan:[38]
\varpi2 | |
\pi2\operatorname{sl |
2(\varpix/\pi)}=
1 | - | |
\sin2x |
1 | |
\pi |
infty | |
-8\sum | |
n=1 |
n\cos2nx | |
e2n\pi-1 |
, \left|\operatorname{Im}x\right|<\pi
\arctan\operatorname{sl}l( | \varpi\pi |
xr)=2\sum |
infty | |
n=0 |
\sin((2n+1)x) | |
(2n+1)\cosh((n+1/2)\pi) |
, \left|\operatorname{Im}x\right|<
\pi | |
2 |
The functions
\tilde{\operatorname{sl}}
\tilde{\operatorname{cl}}
\sin
\cos
\tilde{\operatorname{sl}}s=2\sqrt{2} | \pi2 |
\varpi2 |
| ||||
\sum | ||||
n=1 |
, \left|\operatorname{Im}s\right|<
\varpi | |
2 |
\tilde{\operatorname{cl}}s=\sqrt{2} | \pi2 |
\varpi2 |
infty | |
\sum | |
n=0 |
(2n+1)\cos((2n+1)\pis/\varpi) | |
\sinh((n+1/2)\pi) |
, \left|\operatorname{Im}s\right|<
\varpi | |
2 |
\tilde{\operatorname{sl}}s= | \pi2 |
\varpi2\sqrt{2 |
\tilde{\operatorname{cl}}s= | \pi2 |
\varpi2\sqrt{2 |
The following identities come from product representations of the theta functions:
sll( | \varpi\pi |
xr) |
=2e-\pi/4\sin
infty | |
x\prod | |
n=1 |
1-2e-2n\pi\cos2x+e-4n\pi | |
1+2e-(2n-1)\pi\cos2x+e-(4n-2)\pi |
, x\inC
cll( | \varpi\pi |
xr) |
=2e-\pi/4\cos
infty | |
x\prod | |
n=1 |
1+2e-2n\pi\cos2x+e-4n\pi | |
1-2e-(2n-1)\pi\cos2x+e-(4n-2)\pi |
, x\inC
A similar formula involving the
\operatorname{sn}
Since the lemniscate sine is a meromorphic function in the whole complex plane, it can be written as a ratio of entire functions. Gauss showed that has the following product expansion, reflecting the distribution of its zeros and poles:[40]
\operatorname{sl}z= | M(z) |
N(z) |
where
M(z)=z\prod\alpha\left(1-
z4 | |
\alpha4 |
\right), N(z)=\prod\beta\left(1-
z4 | |
\beta4 |
\right).
Here,
\alpha
\beta
\operatorname{Re}z>0,\operatorname{Im}z\ge0
It can be easily seen (using uniform and absolute convergence arguments to justify interchanging of limiting operations) that
M'(z) | |
M(z) |
infty | |
=-\sum | |
n=0 |
24nH4n
z4n-1 | |
(4n)! |
, \left|z\right|<\varpi
Hn
N'(z) | =(1+i) | |
N(z) |
M'((1+i)z) | - | |
M((1+i)z) |
M'(z) | |
M(z) |
.
N'(z) | |
N(z) |
infty | |
=\sum | |
n=0 |
24n(1-(-1)n22n)H4n
z4n-1 | |
(4n)! |
, \left|z\right|<
\varpi | |
\sqrt{2 |
1 | |
\operatorname{sl |
infty | |
n=0 |
24n(4n-1)H4n
z4n-2 | |
(4n)! |
, \left|z\right|<\varpi.
d | |
dz |
\operatorname{sl | |||
|
2z}-\operatorname{sl}2z
| ||||
\operatorname{sl} |
| ||||
2((1+i)z)}
\operatorname{sl | |
'z}{\operatorname{sl}z}=-\sum |
infty | |
n=0 |
24n(2-(-1)n22n)H4n
z4n-1 | |
(4n)! |
, \left|z\right|<
\varpi | |
\sqrt{2 |
\operatorname{sl | - | ||
|
N'(z) | |
N(z) |
, \left|z\right|<
\varpi | |
\sqrt{2 |
\operatorname{sl}z=C | M(z) |
N(z) |
C
\left|z\right|<\varpi/\sqrt{2}
z\inC
\limz\to
\operatorname{sl | |
z}{z}=1 |
C=1
\blacksquare
Proof by Liouville's theorem
Let
f(z)= | M(z) | = |
N(z) |
(1+i)M(z)2 | |
M((1+i)z) |
,
| |||||
M(z+2\varpi)=e |
M(z), M(z+2\varpi
| |||||
i)=e |
M(z)
f
2\varpi
2\varpii
\operatorname{sl}
g
g(z)= | \operatorname{sl |
z}{f(z)}, |
\operatorname{sl}z=z+\operatorname{O}(z5)
M(z)=z+\operatorname{O}(z5)
N(z)=1+\operatorname{O}(z4)
1
\blacksquare
lnN(\varpi)=\pi/2
M
N
M
N
N(z)= | M((1+i)z) |
(1+i)M(z) |
, z\notin\varpiZ[i]
N(2z)=M(z)4+N(z)4.
Thanks to a certain theorem[44] on splitting limits, we are allowed to multiply out the infinite products and collect like powers of
z
M(z)=z-2 | z5 | -36 |
5! |
z9 | +552 | |
9! |
z13 | |
13! |
+ … , z\inC
N(z)=1+2 | z4 | -4 |
4! |
z8 | +408 | |
8! |
z12 | |
12! |
+ … , z\inC.
This can be contrasted with the power series of
\operatorname{sl}
We define
S
T
S(z)=N\left( | z |
1+i |
| ||||
\right) |
\right)2, T(z)=S(iz).
\operatorname{cl}z= | S(z) |
T(z) |
S(z)=1- | z2 | - |
2! |
z4 | -3 | |
4! |
z6 | +17 | |
6! |
z8 | -9 | |
8! |
z10 | +111 | |
10! |
z12 | |
12! |
+ … , z\inC
T(z)=1+ | z2 | - |
2! |
z4 | +3 | |
4! |
z6 | +17 | |
6! |
z8 | +9 | |
8! |
z10 | +111 | |
10! |
z12 | |
12! |
+ … , z\inC.
Furthermore, the identities
M(2z)=2M(z)N(z)S(z)T(z),
S(2z)=S(z)4-2M(z)4,
T(2z)=T(z)4-2M(z)4
M(z)2+S(z)2=N(z)2,
M(z)2+N(z)2=T(z)2
z\inC
The quasi-addition formulas
M(z+w)M(z-w)=M(z)2N(w)2-N(z)2M(w)2,
N(z+w)N(z-w)=N(z)2N(w)2+M(z)2M(w)2
z,w\inC
M
N
Gauss'
M
N
M(z)M''(z)=M'(z)2-N(z)2,
N(z)N''(z)=N'(z)2+M(z)2
z\inC
M
N
X(z)X''''(z)=4X'(z)X'''(z)-3X''(z)2+2X(z)2, z\inC.
w | ||
M(z)=z\exp\left(-\int | \left( | |
0 |
1 | |
\operatorname{sl |
| ||||
\right)dvdw\right),
w | |
N(z)=\exp\left(\int | |
0 |
\operatorname{sl}2vdvdw\right)
An alternative way of expressing the lemniscate functions as a ratio of entire functions involves the theta functions (see Lemniscate elliptic functions § Methods of computation); the relation between
M,N
\theta1,\theta3
M(z)=2-1/4
\piz2/(2\varpi2) | ||
e | \sqrt{ |
\pi | |
\varpi |
N(z)=2-1/4
\piz2/(2\varpi2) | ||
e | \sqrt{ |
\pi | |
\varpi |
z\inC
\wp(z;1,0)
\omega1=\sqrt{2}\varpi,
\omega2=i\omega1
e1=\tfrac12, e2=0, e3=-\tfrac12.
The related case of a Weierstrass elliptic function with, may be handled by a scaling transformation. However, this may involve complex numbers. If it is desired to remain within real numbers, there are two cases to consider: and . The period parallelogram is either a square or a rhombus. The Weierstrass elliptic function
\wp(z;-1,0)
The square of the lemniscate sine can be represented as
\operatorname{sl}2z=
1 | = | |
\wp(z;4,0) |
i | ={-2\wp}{\left(\sqrt2z+(i-1) | |
2\wp((1-i)z;-1,0) |
\varpi | |
\sqrt2 |
;1,0\right)}
where the second and third argument of
\wp
\operatorname{sl}z=-2 | \wp(z;-1,0) |
\wp'(z;-1,0) |
.
The lemniscate functions can also be written in terms of Jacobi elliptic functions. The Jacobi elliptic functions
\operatorname{sn}
\operatorname{cd}
\operatorname{sn}
\operatorname{cd}
\operatorname{sd}
\operatorname{cn}
1/\sqrt{2}
\operatorname{sl}z=\operatorname{sn}(z;i)=\operatorname{sc}(z;\sqrt{2})={\tfrac1{\sqrt2}\operatorname{sd}}\left(\sqrt2z;\tfrac{1}{\sqrt2}\right)
\operatorname{cl}z=\operatorname{cd}(z;i)=\operatorname{dn}(z;\sqrt{2})={\operatorname{cn}}\left(\sqrt2z;\tfrac{1}{\sqrt2}\right)
where the second arguments denote the elliptic modulus
k
The functions
\tilde{\operatorname{sl}}
\tilde{\operatorname{cl}}
\tilde{\operatorname{sl}}z=\operatorname{cd}(z;i)\operatorname{sd}(z;i)=\operatorname{dn}(z;\sqrt{2})\operatorname{sn}(z;\sqrt{2})=\tfrac{1}{\sqrt{2}}\operatorname{cn}\left(\sqrt{2}z;\tfrac{1}{\sqrt{2}}\right)\operatorname{sn}\left(\sqrt{2}z;\tfrac{1}{\sqrt{2}}\right),
\tilde{\operatorname{cl}}z=\operatorname{cd}(z;i)\operatorname{nd}(z;i)=\operatorname{dn}(z;\sqrt{2})\operatorname{cn}(z;\sqrt{2})=\operatorname{cn}\left(\sqrt{2}z;\tfrac{1}{\sqrt{2}}\right)\operatorname{dn}\left(\sqrt{2}z;\tfrac{1}{\sqrt{2}}\right).
The lemniscate sine can be used for the computation of values of the modular lambda function:
n | ||
\prod | {\operatorname{sl}}{\left( | |
k=1 |
2k-1 | |
2n+1 |
\varpi | \right)} =\sqrt[8]{ | |
2 |
λ((2n+1)i) | |
1-λ((2n+1)i) |
For example:
\begin{aligned} &{\operatorname{sl}}l(\tfrac1{14}\varpir){\operatorname{sl}}l(\tfrac3{14}\varpir){\operatorname{sl}}l(\tfrac5{14}\varpir)\\[7mu] & {}=\sqrt[8]{
λ(7i) | |
1-λ(7i) |
The inverse function of the lemniscate sine is the lemniscate arcsine, defined as
\operatorname{arcsl}x=
x | |
\int | |
0 |
dt | |
\sqrt{1-t4 |
It can also be represented by the hypergeometric function:
\operatorname{arcsl}x=x{}2F
4r) | |
1l(\tfrac12,\tfrac14;\tfrac54;x |
The inverse function of the lemniscate cosine is the lemniscate arccosine. This function is defined by following expression:
\operatorname{arccl}x=
1 | |
\int | |
x |
dt | |
\sqrt{1-t4 |
For in the interval
-1\leqx\leq1
\operatorname{sl}\operatorname{arcsl}x=x
\operatorname{cl}\operatorname{arccl}x=x
For the halving of the lemniscate arc length these formulas are valid:
\begin{aligned} {\operatorname{sl}}l(\tfrac12\operatorname{arcsl}xr)&={\sin}l(\tfrac12\arcsinxr){\operatorname{sech}}l(\tfrac12\operatorname{arsinh}xr)\\ {\operatorname{sl}}l(\tfrac12\operatorname{arcsl}xr)2&={\tan}l(\tfrac14\arcsinx2r) \end{aligned}
Furthermore there are the so called Hyperbolic lemniscate area functions:
\operatorname{aslh}(x)=
x | |
\int | |
0 |
1 | |
\sqrt{y4+1 |
\operatorname{aclh}(x)=
infty | |
\int | |
x |
1 | |
\sqrt{y4+1 |
\operatorname{aclh}(x)=
\varpi | |
\sqrt{2 |
\operatorname{aslh}(x)=\sqrt{2}\operatorname{arcsl}\left(x/\sqrt{style1+\sqrt{x4+1}}\right)
\operatorname{arcsl}(x)=\sqrt{2}\operatorname{aslh}\left(x/\sqrt{style1+\sqrt{1-x4}}\right)
The lemniscate arcsine and the lemniscate arccosine can also be expressed by the Legendre-Form:
These functions can be displayed directly by using the incomplete elliptic integral of the first kind:
\operatorname{arcsl}x=
1 | F\left({\arcsin}{ | |
\sqrt2 |
\sqrt2x | |
\sqrt{1+x2 |
\operatorname{arcsl}x=2(\sqrt2-1)F\left({\arcsin}{
(\sqrt2+1)x | |
\sqrt{1+x2 |
+1}};(\sqrt2-1)2\right)
The arc lengths of the lemniscate can also be expressed by only using the arc lengths of ellipses (calculated by elliptic integrals of the second kind):
\begin{aligned} \operatorname{arcsl}x={}&
2+\sqrt2 | E\left({\arcsin}{ | |
2 |
(\sqrt2+1)x | |
\sqrt{1+x2 |
+1}};(\sqrt2-1)2\right)\\[5mu] & -E\left({\arcsin}{
\sqrt2x | |
\sqrt{1+x2 |
The lemniscate arccosine has this expression:
\operatorname{arccl}x=
1 | |
\sqrt2 |
F\left(\arccosx;
1 | |
\sqrt2 |
\right)
The lemniscate arcsine can be used to integrate many functions. Here is a list of important integrals (the constants of integration are omitted):
\int | 1 |
\sqrt{1-x4 |
\int | 1 |
\sqrt{(x2+1)(2x2+1) |
\int | 1 |
\sqrt{x4+6x2+1 |
\int | 1 |
\sqrt{x4+1 |
\int | 1 |
\sqrt[4]{(1-x4)3 |
\int | 1 |
\sqrt[4]{(x4+1)3 |
\int | 1 |
\sqrt[4]{(1-x2)3 |
\int | 1 |
\sqrt[4]{(x2+1)3 |
\int | 1 |
\sqrt[4]{(ax2+bx+c)3 |
\int\sqrt{\operatorname{sech}x}dx={2\operatorname{arcsl}}\tanh\tfrac12x
\int\sqrt{\secx}dx={2\operatorname{arcsl}}\tan\tfrac12x
For convenience, let
\sigma=\sqrt{2}\varpi
\sigma
\pi
\sigma
3.7081\ldots
The hyperbolic lemniscate sine and cosine can be defined as inverses of elliptic integrals as follows:
z
\operatorname{slh | |
l{\overset{*}{=}}\int | |
0 |
z}
dt | |
\sqrt{1+t4 |
where in
(*)
z
\{\sigma/2,\sigmai/2,-\sigma/2,-\sigmai/2\}
The complete integral has the value:
infty | |
\int | |
0 |
dt | |
\sqrt{t4+1 |
Therefore, the two defined functions have following relation to each other:
\operatorname{slh}z={\operatorname{clh}}{l(
\sigma | |
2 |
-zr)}
The product of hyperbolic lemniscate sine and hyperbolic lemniscate cosine is equal to one:
\operatorname{slh}z\operatorname{clh}z=1
The functions
\operatorname{slh}
\operatorname{clh}
\{\sigma,\sigmai\}
The hyperbolic lemniscate functions can be expressed in terms of lemniscate sine and lemniscate cosine:
\operatorname{slh}l(\sqrt2zr)=
(1+\operatorname{cl | |
2 |
z)\operatorname{sl}z}{\sqrt2\operatorname{cl}z}
\operatorname{clh}l(\sqrt2zr)=
(1+\operatorname{sl | |
2 |
z)\operatorname{cl}z}{\sqrt2\operatorname{sl}z}
But there is also a relation to the Jacobi elliptic functions with the elliptic modulus one by square root of two:
\operatorname{slh}z=
\operatorname{sn | |
(z;1/\sqrt2)}{\operatorname{cd}(z;1/\sqrt2)} |
\operatorname{clh}z=
\operatorname{cd | |
(z;1/\sqrt2)}{\operatorname{sn}(z;1/\sqrt2)} |
The hyperbolic lemniscate sine has following imaginary relation to the lemniscate sine:
\operatorname{slh}z =
1-i | \operatorname{sl}\left( | |
\sqrt2 |
1+i | |
\sqrt2 |
z\right) =
\operatorname{sl | |
\left(\sqrt[4]{-1}z\right) |
}{\sqrt[4]{-1}}
This is analogous to the relationship between hyperbolic and trigonometric sine:
\sinhz =-i\sin(iz) =
\sin\left(\sqrt[2]{-1 | |
z\right) |
}{\sqrt[2]{-1}}
This image shows the standardized superelliptic Fermat squircle curve of the fourth degree:
x4+y4=1
x2+y2=1
x=1
\pi
x2+y2=1
x4+y4=1
\sigma
M(1,1/\sqrt{2})= | \pi |
\sigma |
where
M
The hyperbolic lemniscate sine satisfies the argument addition identity:
\operatorname{slh}(a+b)=
\operatorname{slh | |
a\operatorname{slh}'b |
+\operatorname{slh}b\operatorname{slh}'a}{1-\operatorname{slh}2a\operatorname{slh}2b}
When
u
\operatorname{slh}
\operatorname{clh}
\operatorname{slh}(u)=\sqrt{1+\operatorname{slh}(u)4}
\operatorname{clh}(u)=-\sqrt{1+\operatorname{clh}(u)4}
\operatorname{arsinh}l[\operatorname{slh}(u)2r]=\operatorname{slh}(u)
\operatorname{arsinh}l[\operatorname{clh}(u)2r]=\operatorname{clh}(u) |
There are also the Hyperbolic lemniscate tangent and the Hyperbolic lemniscate coangent als further functions:
The functions tlh and ctlh fulfill the identities described in the differential equation mentioned:
tlh(\sqrt{2}u)=\sin4(\sqrt{2}u)=\operatorname{sl}(u)\sqrt{
\operatorname{cl | |
2 |
u+1}{\operatorname{sl}2u+\operatorname{cl}2u}}
ctlh(\sqrt{2}u)=\cos4(\sqrt{2}u)=\operatorname{cl}(u)\sqrt{
\operatorname{sl | |
2 |
u+1}{\operatorname{sl}2u+\operatorname{cl}2u}}
The functional designation sl stands for the lemniscatic sine and the designation cl stands for the lemniscatic cosine.In addition, those relations to the Jacobi elliptic functions are valid:
tlh(u)=
sn(u;\tfrac{1 | |
2 |
\sqrt{2})}{\sqrt[4]{cd(u;\tfrac{1}{2}\sqrt{2})4+sn(u;\tfrac{1}{2}\sqrt{2})4}}
ctlh(u)=
cd(u;\tfrac{1 | |
2 |
\sqrt{2})}{\sqrt[4]{cd(u;\tfrac{1}{2}\sqrt{2})4+sn(u;\tfrac{1}{2}\sqrt{2})4}}
When
u
\operatorname{tlh}
\operatorname{ctlh}
\operatorname{tlh}(u)=\operatorname{ctlh}(u)3
\operatorname{ctlh}(u)=-\operatorname{tlh}(u)3
|
The horizontal and vertical coordinates of this superellipse are dependent on twice the enclosed area w = 2A, so the following conditions must be met:
x(w)4+y(w)4=1
d | |
dw |
x(w)=-y(w)3
d | |
dw |
y(w)=x(w)3
x(w=0)=1
y(w=0)=0
The solutions to this system of equations are as follows:
x(w)=\operatorname{cl}(\tfrac{1}{2}\sqrt{2}w)[\operatorname{sl}(\tfrac{1}{2}\sqrt{2}w)2+1]1/2[\operatorname{sl}(\tfrac{1}{2}\sqrt{2}w)2+\operatorname{cl}(\tfrac{1}{2}\sqrt{2}w)2]-1/2
y(w)=\operatorname{sl}(\tfrac{1}{2}\sqrt{2}w)[\operatorname{cl}(\tfrac{1}{2}\sqrt{2}w)2+1]1/2[\operatorname{sl}(\tfrac{1}{2}\sqrt{2}w)2+\operatorname{cl}(\tfrac{1}{2}\sqrt{2}w)2]-1/2
The following therefore applies to the quotient:
y(w) | |
x(w) |
=
\operatorname{sl | |
(\tfrac{1}{2}\sqrt{2}w) |
[\operatorname{cl}(\tfrac{1}{2}\sqrt{2}w)2+1]1/2
x(w)=ctlh(w)
y(w)=tlh(w)
The sketch also shows the fact that the derivation of the Areasinus hyperbolic lemniscatus function is equal to the reciprocal of the square root of the successor of the fourth power function.
There is a black diagonal on the sketch shown on the right. The length of the segment that runs perpendicularly from the intersection of this black diagonal with the red vertical axis to the point (1|0) should be called s. And the length of the section of the black diagonal from the coordinate origin point to the point of intersection of this diagonal with the cyan curved line of the superellipse has the following value depending on the slh value:
D(s)=\sqrt{l(
1 | |
\sqrt[4]{s4+1 |
This connection is described by the Pythagorean theorem.
An analogous unit circle results in the arctangent of the circle trigonometric with the described area allocation.
The following derivation applies to this:
d | |
ds |
\arctan(s)=
1 | |
s2+1 |
To determine the derivation of the areasinus lemniscatus hyperbolicus, the comparison of the infinitesimally small triangular areas for the same diagonal in the superellipse and the unit circle is set up below. Because the summation of the infinitesimally small triangular areas describes the area dimensions. In the case of the superellipse in the picture, half of the area concerned is shown in green. Because of the quadratic ratio of the areas to the lengths of triangles with the same infinitesimally small angle at the origin of the coordinates, the following formula applies:
d | |
ds |
aslh(s)=l[
d | |
ds |
\arctan(s)r]D(s)2=
1 | |
s2+1 |
D(s)2=
1 | l( | |
s2+1 |
\sqrt{s2+1 | |
In the picture shown, the area tangent lemniscatus hyperbolicus assigns the height of the intersection of the diagonal and the curved line to twice the green area. The green area itself is created as the difference integral of the superellipse function from zero to the relevant height value minus the area of the adjacent triangle:
atlh(v)=
v | |
2l(\int | |
0 |
\sqrt[4]{1-w4}dwr)-v\sqrt[4]{1-v4}
d | |
dv |
atlh(v)=2\sqrt[4]{1-v4}-l(
d | |
dv |
v\sqrt[4]{1-v4}r)=
1 | |
(1-v4)3/4 |
The following transformation applies:
aslh(x)=atlhl(
x | |
\sqrt[4]{x4+1 |
And so, according to the chain rule, this derivation holds:
d | |
dx |
aslh(x)=
d | atlhl( | |
dx |
x | |
\sqrt[4]{x4+1 |
=
1 | |
(x4+1)5/4 |
l[1-l(
x | |
\sqrt[4]{x4+1 |
This list shows the values of the Hyperbolic Lemniscate Sine accurately. Recall that,
infty | |
\int | |
0 |
\operatorname{d | |
t}{\sqrt{t |
4+1}}=\tfrac14\Betal(\tfrac14,\tfrac14r)=
\varpi | |
\sqrt2 |
=
\sigma | |
2 |
=1.85407\ldots
whereas
\tfrac12\Betal(\tfrac12,\tfrac12r)=\tfrac{\pi}2,
{\operatorname{slh}}l(\tfrac{\varpi}{2\sqrt{2}}r)={\operatorname{slh}}l(\tfrac{\sigma}{4}r)=1
{\sin}l(\tfrac{\pi}2r)=1
\operatorname{slh}\left( | \varpi |
2\sqrt{2 |
\operatorname{slh}\left( | \varpi |
3\sqrt{2 |
\operatorname{slh}\left( | 2\varpi |
3\sqrt{2 |
\operatorname{slh}\left( | \varpi |
4\sqrt{2 |
\operatorname{slh}\left( | 3\varpi |
4\sqrt{2 |
\operatorname{slh}\left( | \varpi |
5\sqrt{2 |
\operatorname{slh}\left( | 2\varpi |
5\sqrt{2 |
\operatorname{slh}\left( | 3\varpi |
5\sqrt{2 |
\operatorname{slh}\left( | 4\varpi |
5\sqrt{2 |
\operatorname{slh}\left( | \varpi |
6\sqrt{2 |
\operatorname{slh}\left( | 5\varpi |
6\sqrt{2 |
That table shows the most important values of the Hyperbolic Lemniscate Tangent and Cotangent functions:
z | \operatorname{clh}z | \operatorname{slh}z | \operatorname{ctlh}z=\cos4z | \operatorname{tlh}z=\sin4z | |
---|---|---|---|---|---|
0 | infty | 0 | 1 | 0 | |
{\tfrac14}\sigma | 1 | 1 | 1/\sqrt[4]{2} | 1/\sqrt[4]{2} | |
{\tfrac12}\sigma | 0 | infty | 0 | 1 | |
{\tfrac34}\sigma | -1 | -1 | -1/\sqrt[4]{2} | 1/\sqrt[4]{2} | |
\sigma | infty | 0 | -1 | 0 |
Given the hyperbolic lemniscate tangent (
\operatorname{tlh}
\operatorname{ctlh}
\operatorname{aslh}(x)=
x | |
\int | |
0 |
1 | |
\sqrt{y4+1 |
\operatorname{aclh}(x)=
infty | |
\int | |
x |
1 | |
\sqrt{y4+1 |
Then the following identities can be established,
tlhl[aslh(x)r]=ctlhl[aclh(x)r]=
x | |
\sqrt[4]{x4+1 |
ctlhl[aslh(x)r]=tlhl[aclh(x)r]=
1 | |
\sqrt[4]{x4+1 |
hence the 4th power of
\operatorname{tlh}
\operatorname{ctlh}
tlhl[aslh(x)r]4+ctlhl[aslh(x)r]4=1
tlhl[aclh(x)r]4+ctlhl[aclh(x)r]4=1
so a 4th power version of the Pythagorean theorem. The bisection theorem of the hyperbolic sinus lemniscatus reads as follows:
slhl[\tfrac{1}{2}aslh(x)r]=
\sqrt{2 | |
x}{\sqrt{x |
2+1+\sqrt{x4+1}}+\sqrt{\sqrt{x4+1}-x2+1}}
This formula can be revealed as a combination of the following two formulas:
aslh(x)=\sqrt{2}arcsll[x(\sqrt{x4+1}+1)-1/2r]
arcsl(x)=\sqrt{2}aslhl(
\sqrt{2 | |
x}{\sqrt{1 |
+x2}+\sqrt{1-x2}}r)
In addition, the following formulas are valid for all real values
x\in\R
slhl[\tfrac{1}{2}aclh(x)r]=\sqrt{\sqrt{x4+1}+x2-\sqrt{2}x\sqrt{\sqrt{x4+1}+x2}}=l(\sqrt{x4+1}-x2+1r)-1/2l(\sqrt{\sqrt{x4+1}+1}-xr)
clhl[\tfrac{1}{2}aclh(x)r]=\sqrt{\sqrt{x4+1}+x2+\sqrt{2}x\sqrt{\sqrt{x4+1}+x2}}=l(\sqrt{x4+1}-x2+1r)-1/2l(\sqrt{\sqrt{x4+1}+1}+xr)
These identities follow from the last-mentioned formula:
tlh[\tfrac{1}{2}aclh(x)]2=\tfrac{1}{2}\sqrt{2-2\sqrt{2}x\sqrt{\sqrt{x4+1}-x2}}=l(2x2+2+2\sqrt{x4+1}r)-1l(\sqrt{\sqrt{x4+1}+1}-xr)
ctlh[\tfrac{1}{2}aclh(x)]2=\tfrac{1}{2}\sqrt{2+2\sqrt{2}x\sqrt{\sqrt{x4+1}-x2}}=l(2x2+2+2\sqrt{x4+1}r)-1l(\sqrt{\sqrt{x4+1}+1}+xr)
Hence, their 4th powers again equal one,
tlhl[\tfrac{1}{2}aclh(x)r]4+ctlhl[\tfrac{1}{2}aclh(x)r]4=1
The following formulas for the lemniscatic sine and lemniscatic cosine are closely related:
sl[\tfrac{1}{2}\sqrt{2}aclh(x)]=cl[\tfrac{1}{2}\sqrt{2}aslh(x)]=\sqrt{\sqrt{x4+1}-x2}
sl[\tfrac{1}{2}\sqrt{2}aslh(x)]=cl[\tfrac{1}{2}\sqrt{2}aclh(x)]=xl(\sqrt{x4+1}+1r)-1/2
Analogous to the determination of the improper integral in the Gaussian bell curve function, the coordinate transformation of a general cylinder can be used to calculate the integral from 0 to the positive infinity in the function
f(x)=\exp(-x4)
This is the cylindrical coordinate transformation in the Gaussian bell curve function:
infty | |
l[\int | |
0 |
\exp(-x2)dxr]2=
infty | |
\int | |
0 |
infty | |
\int | |
0 |
\exp(-y2-z2)dydz=
=
\pi/2 | |
\int | |
0 |
infty | |
\int | |
0 |
\det\begin{bmatrix}\partial/\partialrr\cos(\phi)&\partial/\partial\phir\cos(\phi)\ \partial/\partialrr\sin(\phi)&\partial/\partial\phir\sin(\phi)\end{bmatrix}\expl\{-l[r\cos(\phi)r]2-l[r\sin(\phi)r]2r\}drd\phi=
=
\pi/2 | |
\int | |
0 |
infty | |
\int | |
0 |
r\exp(-r2)drd\phi=
\pi/2 | |
\int | |
0 |
1 | |
2 |
d\phi=
\pi | |
4 |
infty | |
l[\int | |
0 |
\exp(-x4)dxr]2=
infty | |
\int | |
0 |
infty | |
\int | |
0 |
\exp(-y4-z4)dydz=
=
\varpi/\sqrt{2 | |
\int | |
0 |
=
\varpi/\sqrt{2 | |
\int | |
0 |
In the last line of this elliptically analogous equation chain there is again the original Gauss bell curve integrated with the square function as the inner substitution according to the Chain rule of infinitesimal analytics (analysis).
In both cases, the determinant of the Jacobi matrix is multiplied to the original function in the integration domain.
The resulting new functions in the integration area are then integrated according to the new parameters.
In algebraic number theory, every finite abelian extension of the Gaussian rationals
Q(i)
Q(i,\omegan)
n
Q
Q
Q(\zetan)
n
Q(i,\operatorname{sl}(\varpi/n))
n
Q(i)
x
y
(1+i)n
y2=4x3+x
The Bernoulli numbers
Bn
Bn =\limz\to
dn | |
dzn |
z | |
ez-1 |
, n\ge0
and appear in
\sumk\inZ\setminus\{0\
where
\zeta
The Hurwitz numbers
Hn,
Hn =-\limz\to
dn | |
dzn |
z\zeta(z;1/4,0), n\ge0
where
\zeta( ⋅ ;1/4,0)
1/4
0
\sumz\inZ[i]\setminus\{0\
where
Z[i]
G4n
4n
\displaystyle
infty\dfrac{n | |
\begin{array}{ll} \displaystyle\sum | |
n=1 |
k}{e2\pi-1}=\begin{cases} \dfrac{1}{24}-\dfrac{1}{8\pi}&{if
The Hurwitz numbers can also be determined as follows:
H4=1/10
H4n=
3 | |
(2n-3)(16n2-1) |
n-1 | |
\sum | |
k=1 |
\binom{4n}{4k}(4k-1)(4(n-k)-1)H4kH4(n-k), n\ge2
and
Hn=0
n
4
H | ||||
|
,H12=
567 | |
130 |
,H16=
43659 | |
170 |
,\ldots
Also[62]
\operatorname{denom}H4n=\prod(p-1)|4np
p\inP
p\not\equiv3(mod4),
\operatorname{denom}B2n=\prod(p-1)|2np
p\inP
In fact, the von Staudt–Clausen theorem determines the fractional part of the Bernoulli numbers:
B2n+\sum(p-1)|2n
1 | |
p |
\inZ, n\ge1
where
p
a\inZ
b\inZ
p
p\equiv1(mod4)
p=a2+b2
a\equivb+1(mod4)
p
2a=\nu(p)
\nu(p)=p-l{N}p
l{N}p
X3-X\equivY2(\operatorname{mod}p)
X,Y
H4n-
1 | |
2 |
-\sum(p-1)|4n
\nu(p)4n/(p-1) | |
p |
l{\overset{def
The sequence of the integers
Gn
0,-1,5,253,\ldots.
Let
n\ge2
4n+1
Gn\equiv1(mod4)
4n+1
Gn\equiv3(mod4)
Some authors instead define the Hurwitz numbers as
Hn'=H4n
The Hurwitz numbers appear in several Laurent series expansions related to the lemniscate functions:[65]
\begin{align} \operatorname{sl}2z &=
infty | |
\sum | |
n=1 |
24n(1-(-1)n22n)H4n | |
4n |
z4n-2 | |
(4n-2)! |
, \left|z\right|<
\varpi | |
\sqrt{2 |
Analogously, in terms of the Bernoulli numbers:
1 | |
\sinh2z |
=
1 | |
z2 |
infty | |
-\sum | |
n=1 |
22nB2n | |
2n |
z2n-2 | |
(2n-2)! |
, \left|z\right|<\pi.
Let
p
p\equiv1(mod4)
p
\left(\tfrac{a}{p}\right)4
1
a
p
-1
a
p
If
a
p
p'\inZ[i]
\left( | a |
p |
\right)4=\prodp'
\operatorname{sl | |
(2\varpi |
ap'/p)}{\operatorname{sl}(2\varpip'/p)}.
\left( | a |
p |
| ||||
\right)=\prod | ||||
n=1 |
\sin(2\pian/p) | |
\sin(2\pin/p) |
\left(\tfrac{ ⋅ }{ ⋅ }\right)
The Peirce quincuncial projection, designed by Charles Sanders Peirce of the US Coast Survey in the 1870s, is a world map projection based on the inverse lemniscate sine of stereographically projected points (treated as complex numbers).[68]
When lines of constant real or imaginary part are projected onto the complex plane via the hyperbolic lemniscate sine, and thence stereographically projected onto the sphere (see Riemann sphere), the resulting curves are spherical conics, the spherical analog of planar ellipses and hyperbolas. Thus the lemniscate functions (and more generally, the Jacobi elliptic functions) provide a parametrization for spherical conics.
A conformal map projection from the globe onto the 6 square faces of a cube can also be defined using the lemniscate functions.[69] Because many partial differential equations can be effectively solved by conformal mapping, this map from sphere to cube is convenient for atmospheric modeling.[70]
\operatorname{cl}(\sqrt{2}t)= |
| ||||||
|
x2+y2=x
r=\cos\theta,
x2+y2=1
l(x2+y2r){}2=x2-y2
(1+i)\varpi
(1-i)\varpi
\operatorname{sl}z=-i/\operatorname{sl}(z-(1+i)\varpi/2)
1 | |
\sinz |
=\sumn\inZ
(-1)n | |
z+n\pi |
.
i\varepsilon=\operatorname{sl}\tfrac{\beta\varpi}{2}
Let
L
L=Z(1+i)\varpi+Z(1-i)\varpi.
K=Q(i)
l{O}=Z[i]
z\inC
\beta=m+in
\gamma=m'+in'
m,n,m',n'\inZ
m+n
m'+n'
\gamma\equiv1\operatorname{mod}2(1+i)
\operatorname{sl}\betaz=M\beta(\operatorname{sl}z)
M\beta(x)=i\varepsilonx
P\beta(x4) | |
Q\beta(x4) |
P\beta(x),Q\beta(x)\inl{O}[x]
\varepsilon\in\{0,1,2,3\}
\beta
x \right| | |
\operatorname{deg}Λ | |
\beta=\left|(l{O}/\betal{O}) |
l{L}
1
\sinh(x-n\pi)
\sin(x-n\pii)=-i\sinh(ix+n\pi)
\{an\}
S
S
\{n1,n2,n3,\ldots\}
\{1,2,3,\ldots\}
z\inS
\alpha
\beta
k
\left|ak(n)\right|\leMk
n\inN
1\lek\len
\limn\toinfty
n | |
\sum | |
k=1 |
ak(n)=\sum
infty | |
k=1 |
\limn\toinftyak(n).
M
N
M
\varphi17
\tfrac{107}{7410154752000}
\tfrac{107}{207484333056000}
an
a0=1
Hn
M
N
\beta
\beta
l{L}
\beta=m+ni
m,n\inZ
m+n
3
5N(z) | |
M(3z)=d | |
5M(z) |
4+d | |
1 |
M(z)N(z)8
d1,d5,d9
3z-2 | (3z)5 | -36 |
5! |
(3z)9 | |
9! |
+\operatorname{O}(z13
5y | |
)=d | |
5x |
8, | |
1xy |
x=z-2 | z5 | -36 |
5! |
z9 | |
9! |
+\operatorname{O}(z13), y=1+2
z4 | -4 | |
4! |
z8 | |
8! |
+\operatorname{O}(z12),
\{d1,d5,d9\}=\{3,-6,-1\}.
3
-X9-6X5+3X
\operatorname{sl}(2\varpi/3)
Xn=1
e2\pi
n
\beta
\beta
N
\operatorname{sl}(2\varpi/\beta)
\beta
(\beta\overline{\beta | |
\sum | |
n=0 |
-1)/4}a4n+1(\beta)X\beta\overline{\beta-4n}
\begin{align}a1(\beta)&=1,\\ a
|
M(3z)=-M(z)9-6M(z)5N(z)4+3M(z)N(z)8,
N(3z)=N(z)9+6M(z)4N(z)5-3M(z)8N(z),
\operatorname{sl}3z= | -M(z)9-6M(z)5N(z)4+3M(z)N(z)8 |
N(z)9+6M(z)4N(z)5-3M(z)8N(z) |
.
N(z)9
\operatorname{sl}
\operatorname{sl}3z= | -\operatorname{sl |
9z-6\operatorname{sl} |
5z+3\operatorname{sl}z}{1+6\operatorname{sl}4z-3\operatorname{sl}8z}.
\operatorname{cl}z={\operatorname{cn}}\left(\sqrt2z;\tfrac{1}{\sqrt2}\right)
Hn=-\limz\to
dn | \left( | |
dzn |
(1+i)z/2 | ((1+i)z/2)}+ | |
\operatorname{sl |
z | |
2 |
|
n\ge4
l{E}(⋅ ;i)
i
B2n=-
1 | |
2n+1 |
n-1 | |
\sum | |
k=1 |
\binom{2n}{2k}B2kB2(n-k)
n\ge2
B2=1/6
\nu
H4n
1/\operatorname{sl}2.
\varphi=\operatorname{sl}
\omega=2\varpi