In topology, the Lebesgue covering lemma is a useful tool in the study of compact metric spaces.
Given an open cover of a compact metric space, a Lebesgue's number of the cover is a number
\delta>0
X
\delta
The existence of Lebesgue's numbers for compact metric spaces is given by the Lebesgue's covering lemma:
If the metric space
(X,d)
X
\delta>0
The notion of Lebesgue's numbers itself is useful in other applications as well.
Let
lU
X
X
\{A1,...,An\}\subseteqlU
Ai
X
\delta>0
i\in\{1,...,n\}
Ci:=X\smallsetminusAi
Ci
f:X → R
f(x):=
1 | |
n |
n | |
\sum | |
i=1 |
d(x,Ci).
Since
f
\delta
x
Ai
\delta>0
\delta
Y
X
\delta
x0
Y
Y\subseteqB\delta(x0)
B\delta(x0)
\delta
x0
f(x0)\geq\delta
i
d(x0,Ci)\geq\delta
B\delta(x0)\subseteqAi
Y\subseteqAi
Suppose for contradiction that
X
\{U\alpha\mid\alpha\inJ\}
X
\delta
\delta>0
A\subsetX
\operatorname{diam}(A)<\delta
\beta\inJ
A\subsetU\beta
This enables us to perform the following construction:
\delta1=1, \existsA1\subsetX where \operatorname{diam}(A1)<\delta1 and \neg\exists\beta(A1\subsetU\beta)
\delta2=
1 | |
2 |
, \existsA2\subsetX where \operatorname{diam}(A2)<\delta2 and \neg\exists\beta(A2\subsetU\beta)
\vdots
\deltak=
1 | |
k |
, \existsAk\subsetX where \operatorname{diam}(Ak)<\deltak and \neg\exists\beta(Ak\subsetU\beta)
\vdots
Note that
An ≠ \emptyset
n\inZ+
An\not\subsetU\beta
(xn)
xi\inAi
i
X
\{x | |
nk |
\}
k\inZ>
x0
Because
\{U\alpha\}
\alpha0\inJ
x0\in
U | |
\alpha0 |
U | |
\alpha0 |
r>0
Bd(x0,r)\subset
U | |
\alpha0 |
\{
x | |
nk |
\}
L\inZ+
L\lek
x | |
nk |
\inBr/2(x0)
Furthermore, there exists
M\inZ>
\deltaM=\tfrac{1}{M}<\tfrac{r}{2}
z\inZ>
M\lez
\operatorname{diam}(AM)<\tfrac{r}{2}
Finally, define
q\inZ>
nq\geqM
q\geqL
x'\in
A | |
nq |
d(x | |
nq |
,x')\leq\operatorname{diam}
(A | )< | |
nq |
r | |
2 |
nq\geqM
d(x | |
nq |
,x0)<
r | |
2 |
q\geqL
x | |
nq |
\inBr/2\left(x0\right)
Hence
d(x0,x')<r
A | |
nq |
\subset
U | |
\alpha0 |