In complex analysis, a branch of mathematics, Bloch's theorem describes the behaviour of holomorphic functions defined on the unit disk. It gives a lower bound on the size of a disk in which an inverse to a holomorphic function exists. It is named after André Bloch.
Let f be a holomorphic function in the unit disk |z| ≤ 1 for which
|f'(0)|=1
Bloch's theorem states that there is a disk S ⊂ D on which f is biholomorphic and f(S) contains a disk with radius 1/72.
If f is a holomorphic function in the unit disk with the property |f′(0)| = 1, then let Lf be the radius of the largest disk contained in the image of f.
Landau's theorem states that there is a constant L defined as the infimum of Lf over all such functions f, and that L is greater than Bloch's constant L ≥ B.
This theorem is named after Edmund Landau.
Bloch's theorem was inspired by the following theorem of Georges Valiron:
Theorem. If f is a non-constant entire function then there exist disks D of arbitrarily large radius and analytic functions φ in D such that f(φ(z)) = z for z in D.
Bloch's theorem corresponds to Valiron's theorem via the so-called Bloch's principle.
We first prove the case when f(0) = 0, f′(0) = 1, and |f′(z)| ≤ 2 in the unit disk.
By Cauchy's integral formula, we have a bound
|f''(z)|=\left| | 1 |
2\pii |
\oint | dw\right|\le | ||||
|
1 | |
2\pi |
⋅ 2\pir\supw=\gamma(t)
|f'(w)| | \le | |
|w-z|2 |
2 | |
r |
,
By Taylor's theorem, for each z in the unit disk, there exists 0 ≤ t ≤ 1 such that f(z) = z + z2f″(tz) / 2.
Thus, if |z| = 1/3 and |w| < 1/6, we have
|(f(z)-w)-(z-w)|= | 12|z| | \le | |||||
|
|z|2 | = | |
1-|z| |
16<|z|-|w|\le|z-w|. | |
Let D(z0, r) denote the open disk of radius r around z0. For an analytic function g : D(z0, r) → C such that g(z0) ≠ 0, the case above applied to (g(z0 + rz) − g(z0)) / (rg′(0)) implies that the range of g contains D(g(z0), |g′(0)|r / 6).
For the general case, let f be an analytic function in the unit disk such that |f′(0)| = 1, and z0 = 0.
Repeating this argument, we either find a disk of radius at least 1/24 in the range of f, proving the theorem, or find an infinite sequence (zn) such that |zn − zn−1| < 1/2n+1 and |f′(zn)| > 2|f′(zn−1)|.
In the latter case the sequence is in D(0, 1/2), so f′ is unbounded in D(0, 1/2), a contradiction.
In the proof of Landau's Theorem above, Rouché's theorem implies that not only can we find a disk D of radius at least 1/24 in the range of f, but there is also a small disk D0 inside the unit disk such that for every w ∈ D there is a unique z ∈ D0 with f(z) = w. Thus, f is a bijective analytic function from D0 ∩ f−1(D) to D, so its inverse φ is also analytic by the inverse function theorem.
The number B is called the Bloch's constant. The lower bound 1/72 in Bloch's theorem is not the best possible. Bloch's theorem tells us B ≥ 1/72, but the exact value of B is still unknown.
The best known bounds for B at present are
0.4332 ≈ | \sqrt{3 |
The similarly defined optimal constant L in Landau's theorem is called the Landau's constant. Its exact value is also unknown, but it is known that
0.5<L\le
| ||||||||
|
=0.543258965342...
In their paper, Ahlfors and Grunsky conjectured that their upper bounds are actually the true values of B and L.
For injective holomorphic functions on the unit disk, a constant A can similarly be defined. It is known that
0.5<A\le0.7853