Kramers–Heisenberg formula explained

The Kramers–Heisenberg dispersion formula is an expression for the cross section for scattering of a photon by an atomic electron. It was derived before the advent of quantum mechanics by Hendrik Kramers and Werner Heisenberg in 1925,[1] based on the correspondence principle applied to the classical dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927.[2] [3] [4]

The Kramers–Heisenberg formula was an important achievement when it was published, explaining the notion of "negative absorption" (stimulated emission), the Thomas–Reiche–Kuhn sum rule, and inelastic scattering — where the energy of the scattered photon may be larger or smaller than that of the incident photon — thereby anticipating the discovery of the Raman effect.[5]

Equation

The Kramers–Heisenberg (KH) formula for second order processes is[1] [6]

d2\sigma=
d\Omegad(\hbar
\prime)
\omega
k
k\prime
\prime
\omega
k
\omegak

\sum|f\rangle\left|\sum|n\rangle

\langlef|T\dagger|n\rangle\langlen|T|i\rangle
E-En+\hbar\omegak+i
\Gamman
2
i

\right|2\delta(Ei-Ef+\hbar\omegak-\hbar

\prime)
\omega
k

It represents the probability of the emission of photons of energy

\hbar

\prime
\omega
k
in thesolid angle
d\Omega
k\prime
(centered in the

k\prime

direction), after the excitation of the system with photons of energy

\hbar\omegak

.

|i\rangle,|n\rangle,|f\rangle

are the initial, intermediateand final states of the system with energy

Ei,En,Ef

respectively; the deltafunction ensures the energy conservation during the whole process.

T

is the relevanttransition operator.

\Gamman

is the intrinsic linewidth of the intermediate state.

References

  1. Kramers . H. A. . Hendrik Anthony Kramers . Heisenberg . W. . Werner Heisenberg . Über die Streuung von Strahlung durch Atome . Z. Phys. . 31 . 1 . 681–708 . Feb 1925 . 10.1007/BF02980624. 1925ZPhy...31..681K .
  2. Dirac . P. A. M. . Paul Dirac . The Quantum Theory of the Emission and Absorption of Radiation . Proc. R. Soc. Lond. A . 114 . 769 . 243–265 . 1927 . 10.1098/rspa.1927.0039 . 1927RSPSA.114..243D . free .
  3. Dirac . P. A. M. . Paul Dirac . The Quantum Theory of Dispersion . Proc. R. Soc. Lond. A . 114 . 769 . 710–728 . 1927 . 10.1098/rspa.1927.0071 . 1927RSPSA.114..710D . free .
  4. Forbes . Kayn A. . Salam . A. . 2019-11-21 . Kramers-Heisenberg dispersion formula for scattering of twisted light . Physical Review A . 100 . 5 . 053413 . 10.1103/PhysRevA.100.053413. 214221551 .
  5. Breit . G. . Gregory Breit . Quantum Theory of Dispersion . Rev. Mod. Phys. . 4 . 3 . 504–576 . 1932 . 10.1103/RevModPhys.4.504. 1932RvMP....4..504B . 4133208 .
  6. Book: Sakurai, J. J.. J. J. Sakurai

    . J. J. Sakurai. Advanced Quantum Mechanics. 1967. Addison-Wesley. 978-0201067101. Reading, Mass.. 869733. 56.