In the geometry of numbers, the Klein polyhedron, named after Felix Klein, is used to generalize the concept of simple continued fractions to higher dimensions.
Let
styleC
styleRn
styleC
styleC\capZn
Suppose
style\alpha>0
styleR2
style\{(1,\alpha),(1,0)\}
style\{(1,\alpha),(0,1)\}
styleZ2.
style\alpha
Suppose
styleC
style(ai)
styleRn
styleC=\{\sumiλiai:(\foralli) λi\geq0\}
style(wi)
styleC=\{x:(\foralli) \langlewi,x\rangle\geq0\}
styleD(x)
stylex
styleH(x)
stylex
Call the vector
stylex\inRn
styleH(x)\capQn=\{0\}
styleC
styleai
stylewi
The boundary
styleV
styleV
style\Gammae(V)
styleV
styleV
style\Gammaf(V)
style(n-1)
styleV
style(n-2)
Both of these graphs are structurally related to the directed graph
style\Upsilonn
styleGLn(Q)
styleA
styleB
styleA-1B
styleUW
U=\left(\begin{array}{cccc}1& … &0&c1\ \vdots&\ddots&\vdots&\vdots\ 0& … &1&cn-1\ 0& … &0&cn\end{array}\right)
(with
styleci\inQ
stylecn ≠ 0
styleW
styleV
style\Gammae(V)
style\Gammaf(V)
style\Upsilonn
style(x0,x1,\ldots)
style\Gammae(V)
style(A0,A1,\ldots)
style\Upsilonn
stylexk=Ak(e)
stylee
style(1,\ldots,1)\inRn
style(\sigma0,\sigma1,\ldots)
style\Gammaf(V)
style(A0,A1,\ldots)
style\Upsilonn
style\sigmak=Ak(\Delta)
style\Delta
style(n-1)
styleRn
Lagrange proved that for an irrational real number
style\alpha
style\alpha
style\alpha
Let
styleK\subseteqR
stylen
style\alphai:K\toR
stylen
styleK
styleC
styleK
styleC=\{x\inRn:(\foralli) \alphai(\omega1)x1+\ldots+\alphai(\omegan)xn\geq0\}
style\omega1,\ldots,\omegan
styleK
styleQ
Given a path
style(A0,A1,\ldots)
style\Upsilonn
styleRk=Ak+1
-1 | |
A | |
k |
stylem
styleRk+qm=Rk
stylek,q\geq0
styleAm
-1 | |
A | |
0 |
style\Gammae(V)
style\Gammaf(V)
The generalized Lagrange theorem states that for an irrational simplicial cone
styleC\subseteqRn
style(ai)
style(wi)
styleV
styleC
stylen
styleai
stylex0,x1,\ldots
style\Gammae(V)
stylexk
styleD(ai)
stylewi
style\sigma0,\sigma1,\ldots
style\Gammaf(V)
style\sigmak
styleH(wi)
Take
stylen=2
styleK=Q(\sqrt{2})
style\{(x,y):x\geq0,\verty\vert\leqx/\sqrt{2}\}
styleK
style(pk,\pmqk)
stylepk/qk
style\sqrt{2}
style(xk)
style(1,0)
style((1,0),(3,2),(17,12),(99,70),\ldots)
style\sigmak
stylexk
stylexk+1
style\bar{x}k
style\bar{\sigma}k
stylexk
style\sigmak
stylex
styleT=\left(\begin{array}{cc}3&4\ 2&3\end{array}\right)
stylexk+1=Txk
styleR=\left(\begin{array}{cc}6&1\ -1&0\end{array}\right)=\left(\begin{array}{cc}1&6\ 0&-1\end{array}\right)\left(\begin{array}{cc}0&1\ 1&0\end{array}\right)
Let
styleMe=\left(\begin{array}{cc}
12 | |
& |
12 | - | ||
|
14 | |
\end{array} |
\right)
style\bar{M}e=\left(\begin{array}{cc}
12 | |
& |
12 | |||
|
14 | |
\end{array} |
\right)
styleMf=\left(\begin{array}{cc}3&1\ 2&0\end{array}\right)
style\bar{M}f=\left(\begin{array}{cc}3&1\ -2&0\end{array}\right)
style(MeRk)
style(\bar{M}eRk)
style\Upsilon2
styleMeR
-1 | |
M | |
e |
=T
style\bar{M}eR
-1 | |
\bar{M} | |
e |
=T-1
stylexk=MeRk(e)
style\bar{x}k=\bar{M}eRk(e)
style(MfRk)
style(\bar{M}fRk)
style\Upsilon2
styleMfR
-1 | |
M | |
f |
=T
style\bar{M}fR
-1 | |
\bar{M} | |
f |
=T-1
style\sigmak=MfRk(\Delta)
style\bar{\sigma}k=\bar{M}fRk(\Delta)
A real number
style\alpha>0
style\{q(p\alpha-q):p,q\inZ,q>0\}
Given a simplicial cone
styleC=\{x:(\foralli) \langlewi,x\rangle\geq0\}
styleRn
style\langlewi,wi\rangle=1
styleC
styleN(C)=inf\{\prodi\langlewi,x\rangle:x\inZn\capC\setminus\{0\}\}
Given vectors
stylev1,\ldots,vm\inZn
style[v1,\ldots,vm]=
\sum | |
i1< … <in |
\vert
\det(v | |
i1 |
…
v | |
in |
)\vert
style\{\sumiλivi:(\foralli) 0\leqλi\leq1\}
Let
styleV
styleC
stylex
style\Gammae(V)
style[x]=[v1,\ldots,vm]
stylev1,\ldots,vm
styleZn
stylex
style\sigma
style\Gammaf(V)
style[\sigma]=[v1,\ldots,vm]
stylev1,\ldots,vm
style\sigma
Then
styleN(C)>0
style\{[x]:x\in\Gammae(V)\}
style\{[\sigma]:\sigma\in\Gammaf(V)\}
The quantities
style[x]
style[\sigma]
style\{(1,\alpha),(1,0)\}
style\alpha