Kaniadakis Gamma distribution explained

κ-Gamma distribution
Type:density
Parameters:

0\leq\kappa<1


\alpha>0

shape (real)

\beta>0

rate (real)

0<\nu<1/\kappa

The Kaniadakis Generalized Gamma distribution (or κ-Generalized Gamma distribution) is a four-parameter family of continuous statistical distributions, supported on a semi-infinite interval [0,∞), which arising from the [[Kaniadakis statistics]]. It is one example of a Kaniadakis distribution. The κ-Gamma is a deformation of the Generalized Gamma distribution.

Definitions

Probability density function

The Kaniadakis κ-Gamma distribution has the following probability density function:[1]

f
\kappa

(x)=(1+\kappa\nu)(2\kappa)\nu

\Gamma
(1
2\kappa
+
\nu
2
)
\Gamma
(1
2\kappa
-
\nu
2
)
\alpha\beta\nu
\Gamma(\nu)

x\alpha\exp\kappa(-\betax\alpha)

valid for

x\geq0

, where

0\leq|\kappa|<1

is the entropic index associated with the Kaniadakis entropy,

0<\nu<1/\kappa

,

\beta>0

is the scale parameter, and

\alpha>0

is the shape parameter.

The ordinary generalized Gamma distribution is recovered as

\kappa0

:
f
0

(x)=

|\alpha|\beta\nu
\Gamma\left(\nu\right)

x\alpha\exp\kappa(-\betax\alpha)

.

Cumulative distribution function

The cumulative distribution function of κ-Gamma distribution assumes the form:

F\kappa(x)=(1+\kappa\nu)(2\kappa)\nu

\Gamma
(1
2\kappa
+
\nu
2
)
\Gamma
(1
2\kappa
-
\nu
2
)
\alpha\beta\nu
\Gamma(\nu)
x
\int
0

z\alpha\exp\kappa(-\betaz\alpha)dz

valid for

x\geq0

, where

0\leq|\kappa|<1

. The cumulative Generalized Gamma distribution is recovered in the classical limit

\kappa0

.

Properties

Moments and mode

The κ-Gamma distribution has moment of order

m

given by

\operatorname{E}[Xm]=\beta-m/

(1+\kappa\nu)(2\kappa)-m/\alpha
1+\kappa(\nu+
m
\alpha
)
\Gamma(\nu+
m
\alpha
)
\Gamma(\nu)
\Gamma(1+
\nu
2
)
2\kappa
\Gamma(1-
\nu
2
)
2\kappa
\Gamma(1-
\nu
2
-
m
2\alpha
)
2\kappa
\Gamma(1+
\nu
2
+
m
2\alpha
)
2\kappa

The moment of order

m

of the κ-Gamma distribution is finite for

0<\nu+m/\alpha<1/\kappa

.

The mode is given by:

xrm{mode

} = \beta^ \Bigg(\nu - \frac \Bigg)^ \Bigg[1 - \kappa^2 \bigg(\nu - \frac{1}{\alpha}\bigg)^2\Bigg]^

Asymptotic behavior

The κ-Gamma distribution behaves asymptotically as follows:

\limxf\kappa(x)\sim(2\kappa\beta)-1/\kappa(1+\kappa\nu)(2\kappa)\nu

\Gamma
(1
2\kappa
+
\nu
2
)
\Gamma
(1
2\kappa
-
\nu
2
)
\alpha\beta\nu
\Gamma(\nu)

x\alpha

\lim
x\to0+

f\kappa(x)=(1+\kappa\nu)(2\kappa)\nu

\Gamma
(1
2\kappa
+
\nu
2
)
\Gamma
(1
2\kappa
-
\nu
2
)
\alpha\beta\nu
\Gamma(\nu)

x\alpha

Related distributions

\alpha=\nu=1

;

\alpha=1

and

\nu=n=

positive integer.

\alpha=2

and

\nu=1/2

;

\kappa=0

, such as:

\alpha=1

;

\alpha=\nu=1

;

\alpha=1

and

\nu=n=

positive integer;

\alpha=1

and

\nu=

half integer;

\alpha=2

and

\nu>0

;

\alpha=2

and

\nu=1

;

\alpha=2

and

\nu=

half integer;

\alpha=2

and

\nu=3/2

;

\alpha=2

and

\nu=1/2

;

\alpha>0

and

\nu=1

;

\alpha>0

and

\nu=1/\alpha

;

See also

External links

Notes and References

  1. Kaniadakis . G. . 2021-01-01 . New power-law tailed distributions emerging in κ-statistics (a) . Europhysics Letters . 133 . 1 . 10002 . 10.1209/0295-5075/133/10002 . 0295-5075. 2203.01743 . 2021EL....13310002K . 234144356 .