Journal of Mathematical Economics explained

Journal of Mathematical Economics
Discipline:Mathematical economics
Abbreviation:J. Math. Econ.
Editor:Andres Carvajal
Publisher:Elsevier
Frequency:Bimonthly
History:1974–present
Impact:0.634
Impact-Year:2018
Website:http://www.journals.elsevier.com/journal-of-mathematical-economics/
Link2:http://www.sciencedirect.com/science/journal/03044068
Link2-Name:Online archive
Issn:0304-4068
Oclc:39167313
Lccn:82645478
Coden:JMECDA

The Journal of Mathematical Economics is a bimonthly peer-reviewed academic journal of mathematical economics published by Elsevier. It covers work in economic theory that expresses economic ideas using formal mathematical reasoning. The journal was established in 1974, with Werner Hildenbrand as the founding editor-in-chief. The current editor-in-chief is Andres Carvajal (UC Davis). According to the Journal Citation Reports, the journal has a 2018 5-year impact factor of 0.725.[1]

The journal has published some seminal papers in economics, including some written by Nobel laureates such as Lloyd Shapley,[2] [3] Alvin Roth,[4] Robert Aumman,[5] [6] [7] Roger Myerson,[8] Eric Maskin,[9] Leonid Hurwicz,[10] [11] Reinhard Selten,[12] Edmund Phelps,[13] Oliver Hart,[14] Paul Milgrom and Gerard Debreu.[15] [16] [17] Similarly, Fields medal winner Stephen Smale has also published in this journal regularly.[18] [19] [20]

Several other prominent economists and mathematicians have also published in the journal, including Herve Moulin, Andreu Mas-Collel, David Gale, Jon Geanakoplos, David Kreps and Hugo Sonnenschein.

Notes and References

  1. Book: 2014 . Journal of Mathematical Economics . 2013 Journal Citation Reports . . Social Sciences . Web of Science. Journal Citation Reports .
  2. On cores and indivisibility. Journal of Mathematical Economics. 1. 23–37. Lloyd Shapley, Herbert Scarf. 10.1016/0304-4068(74)90033-0. 1974. 10338.dmlcz/135727. 154744803 . free.
  3. Noncooperative general exchange with a continuum of traders: Two models. Journal of Mathematical Economics. 23. 3. 253–293. Pradeep Dubey, Lloyd S. Shapley. 10.1016/0304-4068(94)90008-6. 1994.
  4. Weak versus strong domination in a market with indivisible goods. Journal of Mathematical Economics. 4. 2. 131–137. Alvin E. Roth, Andrew Postlewaite. 10.1016/0304-4068(77)90004-0. 1977.
  5. Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics. 1. 67–96. Robert J. Aumann. 10.1016/0304-4068(74)90037-8. 1974. 10.1.1.120.1740.
  6. An elementary proof that integration preserves uppersemicontinuity. Journal of Mathematical Economics. 3. 15–18. Robert J. Aumann. 10.1016/0304-4068(76)90003-3. 1976.
  7. A note on Gale's example. Journal of Mathematical Economics. 1. 2. 209–211. Robert J. Aumann, Bezalel Peleg. 10.1016/0304-4068(74)90012-3. 1974.
  8. Optimal coordination mechanisms in generalized principal–agent problems. Journal of Mathematical Economics. 10. 67–81. Roger B. Myerson. 10.1016/0304-4068(82)90006-4. 1982.
  9. Nash and dominant strategy implementation in economic environments. Journal of Mathematical Economics. 10. 17–47. Jean-Jacques Laffont, Eric Maskin. 10.1016/0304-4068(82)90004-0. 1982.
  10. An integrability condition with applications to utility theory and thermodynamics. Journal of Mathematical Economics. 6. 7–14. Leonid Hurwicz, Marcel K. Richter. 10.1016/0304-4068(79)90019-3. 1979.
  11. On the demand generated by a smooth and concavifiable preference ordering. Journal of Mathematical Economics. 16. 2. 169–189. Leonid Hurwicz, James Jordan, Yakar Kannai. 10.1016/0304-4068(87)90006-1. 1987.
  12. Game theoretical analysis of wage bargaining in a simple business cycle model. Journal of Mathematical Economics. 10. 2–3. 177–195. Reinhard Selten, Werner Güth. 10.1016/0304-4068(82)90036-2. 1982.
  13. Ambiguity on the insurer's side: The demand for insurance. Journal of Mathematical Economics. 58. 61–78. Massimiliano Amarante, Mario Ghossou, Edmund Phelps. 10.1016/j.jmateco.2015.03.008. 2015.
  14. A proof of the existence of equilibrium without the free disposal assumption. Journal of Mathematical Economics. 2. 3. 335–343. Oliver D. Hart, Harold W. Kuhn. 10.1016/0304-4068(75)90001-4. 1975.
  15. Excess demand functions. Journal of Mathematical Economics. 1. 15–21. Gerard Debreu. 10.1016/0304-4068(74)90032-9. 1974.
  16. Least concave utility functions. Journal of Mathematical Economics. 3. 2. 121–129. Gerard Debreu. 10.1016/0304-4068(76)90020-3. 1976.
  17. The rate of convergence of the core of an economy. Journal of Mathematical Economics. 2. 1–7. Gererd Debreu. 10.1016/0304-4068(75)90008-7. 1975.
  18. Global analysis and economics V: Pareto theory with constraints. Stephen Smale. 10.1016/0304-4068(74)90013-5.
  19. A convergent process of price adjustment and global newton methods. Journal of Mathematical Economics. 3. 2. 107–120. Stephen Smale. 10.1016/0304-4068(76)90019-7. 1976.
  20. Exchange processes with price adjustment. Journal of Mathematical Economics. 3. 3. 211–226. Stephen Smale. 10.1016/0304-4068(76)90009-4. 1976.