Jiří Rosický (mathematician) explained

Jiří Rosický (born 1946) is a Czech mathematician. He works on the field of category theory.[1] He is cited as one of the first researchers to introduce tangent categories and tangent bundle functors.[2] [3] [4] [5]

Life

Jiří Rosický was born in 1946. In 1963–1968, he studied mathematics at the Faculty of Science of the Masaryk University. In 1969, he started to work in the department of algebra and geometry at the Faculty of Science. In 1979, he became head of the department.[6]

Work

His work is in category theory, model theory, abstract homotopy theory, and general algebra.[3] [7] [8] Along with Jiří Adámek he has written a book on the theory of locally presentable and accessible categories.[9]

Notes and References

  1. Web site: Jiří Rosický in nLab . 2023-11-19 . ncatlab.org.
  2. Garner . Richard . 2018-01-07 . An embedding theorem for tangent categories . Advances in Mathematics. 323 . 668–687 . 10.1016/j.aim.2017.10.039 . free . 0001-8708. 1704.08386 .
  3. Cockett . J. R. B. . Cruttwell . G. S. H. . 2014-04-01 . Differential Structure, Tangent Structure, and SDG . Applied Categorical Structures. 22 . 2 . 331–417 . 10.1007/s10485-013-9312-0 . 1572-9095.
  4. Leung . Poon . August 2018 . Tangent Bundles, Monoidal Theories and Weil Algebras . Bulletin of the Australian Mathematical Society. 98 . 1 . 175–176 . 10.1017/S0004972718000102 . 0004-9727. free .
  5. Cockett . Robin . Lemay . Jean-Simon Pacaud . Lucyshyn-Wright . Rory B. B. . 2020 . Tangent Categories from the Coalgebras of Differential Categories . DROPS-IDN/V2/Document/10.4230/LIPIcs.CSL.2020.17. 17:1–17:17 . Schloss-Dagstuhl - Leibniz Zentrum für Informatik . 10.4230/LIPIcs.CSL.2020.17. free .
  6. Web site: Matematika má vychovávat ke korektnímu myšlení. Masaryk University. cs. 2006-01-26. 2023-11-22.
  7. Bagaria . Joan . Brooke-Taylor . Andrew . 2013 . On Colimits and Elementary Embeddings . The Journal of Symbolic Logic . 78 . 2 . 562–578 . 10.2178/jsl.7802120 . 43303667 . 1202.5215 . 0022-4812.
  8. Wilson . Trevor M. . 2020-03-25 . Weak Vopěnka's Principle does not imply Vopěnka's Principle . . 363 . 106986 . 10.1016/j.aim.2020.106986 . 0001-8708. 1909.09333 .
  9. Book: Adámek . Jiří . Rosický . Jiří . 10.1017/CBO9780511600579 . 0-521-42261-2 . 1294136 . Cambridge University Press, Cambridge . London Mathematical Society Lecture Note Series . Locally presentable and accessible categories . 189 . 1994 . 0795.18007. See zbMATH review by John R. Isbell.