Janos Hajdu (biophysicist) explained

Janos Hajdu
Birth Date:1948 9, df=yes
Birth Place:Budapest, Hungary
Birth Name:Hajdu János Gergely Menyhért
Alma Mater:Eötvös Loránd University (Diploma in Chemistry)
Website:https://lmb.icm.uu.sehttps://www.eli-beams.eu/?s=elibio

Janos Hajdu (born 17 September 1948) is a Swedish/Hungarian scientist, who has made contributions to biochemistry, biophysics, and the science of X-ray free-electron lasers. He is a professor of molecular biophysics at Uppsala University and a leading scientist at the European Extreme Light Infrastructure ERIC in Prague.

Education

Hajdu matriculated in 1967 from Eötvös József Gimnasium, a grammar school in Budapest. At the age of 16, he won a science prize, which allowed him to study and perform experiments in the Institute of Medical Chemistry[1] of the Semmelweis University Medical School in Budapest (head: Brunó Ferenc Straub). His first publication was produced in this institute.[2] In 1968, he was admitted to Eötvös Loránd University[3] where he received an M.Sc. in chemistry (1973). He obtained a Ph.D. in biology in 1980, "Symmetry and Structural Changes in Oligomeric Proteins"[4] and a D.Sc. in physics in 1993, "Macromolecular Structure, Function and Dynamics: X-Ray Diffraction Studies in Four Dimensions".[5] He left Hungary in 1981.

Appointments

Career and research

Hajdu's first employment (1973) was with the Institute of Enzymology of the Hungarian Academy of Sciences (head: Brunó Ferenc Straub). In his early work, Hajdu exploited chemistry to determine the symmetry of multi-subunit protein complexes, and characterised structural transitions in these systems.[6] [7] Following an invitation by Louise Johnson Hajdu joined Johnson's crystallography team in Oxford in 1981, and spent 16 years in the Laboratory of Molecular Biophysics in Oxford (1981-1996), He was first a postdoctoral research fellow and later the head of an MRC laboratory at the Laboratory of Molecular Biophysics. in 1988, he was elected a lecturer of Christ Church,[8] Oxford, teaching biochemistry and biophysics.

In 1981, the first dedicated Synchrotron Radiation Source came to life in Daresbury,[9] and Hajdu and his colleagues were among the first users of the facility. The new synchrotron gave them the means to pursue a new direction in structural biology which was to not only determine the structure of proteins, but to observe them functioning. The very first time-resolved X-ray diffraction experiments produced 3D movies of catalysis in crystalline enzymes[10] [11] and revealed structural transitions in viruses.[12] This was a path to understand the workings of molecular machineries, but radiation damage to the sample during exposure was a serious limitation. Hajdu realised there may be a way to outrun radiation damage processes by using extremely short and intense X-ray pulses (speed of light vs. the speed of the shock wave of damage formation). Experimental tests had to wait until the arrival of the first X-ray free-electron lasers,[13] [14] [15] delivering femtosecond X-ray pulses with a peak brightness exceeding synchrotrons by a factor of ten billion. Funding for building such X-ray free-electron lasers faced hurdles.  

The turning point occurred in 1996, when Hajdu took up a chair at Uppsala University and set up a European research network to explore the physical limits of imaging. The project engaged an interdisciplinary approach, drawing upon structural sciences, plasma physics, optics and mathematics. Hajdu presented their findings to the US Department of Energy in 2000 as part of the scientific justification for building the first hard X-ray free-electron laser, the Linac Coherent Light Source (LCLS), at Stanford.[16] [17]

The proof of principle experiment was performed In 2006 with a soft X-ray free-electron laser in Hamburg where Hajdu with Henry N. Chapman and colleagues demonstrated experimentally that outrunning radiation damage is possible with a femtosecond X-ray pulse. The pulse turned the nano-patterned sample into a 60,000 K plasma, but not before a diffraction pattern of the virtually undamaged object could be recorded. The object was reconstructed to the diffraction-limited resolution. When the first hard X-ray free-electron laser (LCLS) was turned on in 2009,[18] they also showed that “diffraction before destruction” or "observation before destruction" extends to the atomic scale [19] launching the methods of serial nano-crystallography, ultrafast diffractive imaging,[20] flash radiography,[21] spectroscopy,[22] and applications in fusion energy research [23] [24]

Achievements

[32] and in Europe (the European XFEL, Hamburg).[33] [34]

Honours

Awards

Hajdu is Main Editor of the Journal of Applied Crystallography[44] and Editorial Board Member of Nature's Scientific Data.

See also

Notes and References

  1. Web site: Medical Chemistry . 2024-07-31 . semmelweis.hu . en-US.
  2. Hajdu. J. Csanyi. V. The influence of concentrated electrolytes on the constitutive penicillinase synthesis of Bacillus cereus. Acta Biochim. Biophys. Acad. Sci. Hung.. 5. 41–43. 1970. 1. 4992648.
  3. Web site: Eötvös Loránd University . 2024-07-31 . www.elte.hu . en.
  4. Web site: PDS bejelentkezés . 2024-07-31 . opac.mtak.hu.
  5. Web site: PDS bejelentkezés . 2024-07-31 . opac.mtak.hu.
  6. Hajdu. J. Bartha. F. Friedrich. P. Crosslinking with bifunctional reagents as a means for studying the symmetry of oligomeric proteins. Eur J Biochem. 1976-09-15. 68. 2. 373–383. 10.1111/j.1432-1033.1976.tb10824.x. free. 987906.
  7. Hajdu. J. Dombradi. V. Bot. G. Friedrich. P. Structural changes in glycogen phosphorylase as revealed by cross-linking with bifunctional diimidates: Phosphorylase b. Biochemistry. 1979. 18. 18. free. 4037–4041. 10.1021/bi00585a030. 226120.
  8. Web site: Homepage Christ Church, University of Oxford . 2024-07-31 . www.chch.ox.ac.uk . en.
  9. [Synchrotron Radiation Source]
  10. Hajdu. J. Acharya. KR. Stuart. DI. McLaughlin. PJ. Barford. D. Oikonomakos. NG. Klein. H. Johnson. LN. Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. EMBO J. 1987. 6. 2. 539–546. 10.1002/j.1460-2075.1987.tb04786.x. free. 3107984. 553427.
  11. Hajdu. J. Machin. PA. Campbell. JW. Greenhough. TJ. Clifton. IJ. Zurek. S. Gover. S. Johnson. LN. Elder. M. Millisecond X-ray diffraction and the first electron density map from Laue photographs of a protein crystal. Nature. 1987-09-10. 329. 6135. 178–181. 10.1038/329178a0. free. 3114644. 1987Natur.329..178H.
  12. Campbell . JW . Clifton . IJ . Greenhough . TJ . Hajdu . J . Harrison . SC . Liddington . RC . Shrive . AK . Calcium binding sites in tomato bushy stunt virus visualized by Laue crystallography . J Mol Biol . 214 . 627–632 . 1990 . 3 . free . 10.1016/0022-2836(90)90278-T . 2388260 .
  13. [Free-electron laser]
  14. Web site: LCLS Linac Coherent Light Source SLAC National Accelerator Laboratory . 2024-07-31 . lcls.slac.stanford.edu.
  15. [European XFEL]
  16. Hajdu . J . Hodgson . K . Miao . J . van der Spoel . D . Neutze . R . Robinson . CV . Faigel . G . Jacobsen . C . Kirz . J . Sayre . D . Weckert . E . Materlik . G . Szoke . A . 2000 . Structural studies on single particles and biomolecules . SSRL, SLAC, Stanford, USA, SLACR-611 . 6 . 35–62 . 10.2172/812649 . free. http://www-ssrl.slac.stanford.edu/lcls/papers/lcls_experiments_2.pdf
  17. Minutes of the October 10–11, 2000 Basic Energy Sciences Advisory Committee (BESAC) meeting.https://science.osti.gov/-/media/bes/besac/pdf/Oct_00_minutes.pdf
  18. Web site: LCLS Linac Coherent Light Source SLAC National Accelerator Laboratory . 2024-07-31 . lcls.slac.stanford.edu.
  19. Chapman. HN. Fromme. P. Barty. A. White. TA. Kirian. RA. Aquila. A. Hunter. MS. Schulz. J. DePonte. DP. Weierstall. U. Doak. RB. Maia. FR. Martin. AV. Schlichting. I. Lomb. L. Coppola. N. Shoeman. RL. Epp. SW. Hartmann. R. Rolles. D. Rudenko. A. Foucar. L. Kimmel. N. Weidenspointner. G. Holl. P. Liang. M. Barthelmess. M. Caleman. C. Boutet. S. Bogan. MJ. Krzywinski. J. Femtosecond X-ray protein nanocrystallography. Nature. free. 2011. 470. 7332. 73–7. 10.1038/nature09750. 21293373. 3429598. 2011Natur.470...73C.
  20. Seibert. MM. Ekeberg. T. Maia. FR. Svenda. M. Andreasson. J. Jönsson. O. Odić. D. Iwan. B. Rocker. A. Westphal. D. Hantke. M. DePonte. DP. Barty. A. Schulz. J. Gumprecht. L. Coppola. N. Aquila. A. Liang. M. White. TA. Martin. A. Caleman. C. Stern. S. Abergel. C. Seltzer. V. Claverie. JM. Potdevin. G. Graafsma. H. Nilsson. B. Chapman. HN. Hajdu. J. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011. free. 470. 7332. 78–81. 10.1038/nature09748. 21293374. 4038304. 2011Natur.470...78S.
  21. Schropp. A. Hoppe. R. Meier. V. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL. Sci Rep. 5. 11089. 2015. 10.1038/srep11089. free. 26086176. 4650669. 2015NatSR...511089S.
  22. Roseker. W. Hruszkewycz. SO. Lehmkühler. F. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat Commun. 9. 1704. 2018. 10.1038/s41467-018-04178-9. free. 29703980. 5923200. 2018NatCo...9.1704R.
  23. Radousky. HB. Armstrong. MR. Goldman. N. Time resolved x-ray diffraction in shock compressed systems. J. Appl. Phys.. 129. 040901. 2021. 4. 10.1063/5.0034929. free. 2021JAP...129d0901R.
  24. Dornheim. T. Böhme. M. Kraus. D. Döppner. T. Preston. TR. Moldabekov. ZA. Vorberger. J. Accurate temperature diagnostics for matter under extreme conditions. Nat Commun. 13. 7911. 2022. 10.1038/s41467-022-35578-7. free. 36564411. 2206.12805. 2022NatCo..13.7911D.
  25. Hajdu. J. Acharya. KR. Stuart. DI. McLaughlin. PJ. Barford. D. Oikonomakos. NG. Klein. H. Johnson. LN. Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. EMBO J. 1987. 6. 2. 539–546. 3107984. 553427. 10.1002/j.1460-2075.1987.tb04786.x. free.
  26. Berglund. GI. Carlsson. GH. Smith. AT. Szöke. H. Henriksen. A. Hajdu. J. The catalytic pathway of horseradish peroxidase at high resolution. Nature. 417. 463–468. 2002. 6887. 10.1038/417463a. free. 12024218. 2002Natur.417..463B.
  27. Campbell. JW. Clifton. IJ. Greenhough. TJ. Hajdu. J. Harrison. SC. Liddington. RC. Shrive. AK. Calcium binding sites in tomato bushy stunt virus visualized by Laue crystallography. J. Mol. Biol.. 214. 627–632. 1990. 3. 10.1016/0022-2836(90)90278-T. free. 2388260.
  28. Williams. PA. Fülöp. V. Garman. EF. Saunders. NF. Ferguson. SJ. Hajdu. J. Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature. 1997-09-25. 389. 6649. 406–412. 10.1038/38775. free. 9311786. 1997Natur.389..406W.
  29. Roach. PL. Clifton. IJ. Fülöp. V. Harlos. K. Barton. GJ. Hajdu. J. Andersson. I. Schofield. CJ. Baldwin. JE. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature. 1995-06-22. 375. 6533. 700–704. 10.1038/375700a0. free. 7791906. 1995Natur.375..700R.
  30. Valegård. K. van Scheltinga. AC. Lloyd. MD. Hara. T. Ramaswamy. S. Perrakis. A. Thompson. A. Lee. HJ. Baldwin. JE. Schofield. CJ. Hajdu. J. Andersson. I. Structure of a cephalosporin synthase. Nature. 1998-08-20. 394. 6695. 805–809. 10.1038/29575. free. 9723623. 1998Natur.394..805V.
  31. Chapman. HN. Hau-Riege. SP. Bogan. MJ. Bajt. S. Barty. A. Boutet. S. Marchesini. S. Frank. M. Woods. BW. Benner. WH. London. RA. Rohner. U. Szöke. A. Spiller. E. Möller. T. Bostedt. C. Shapiro. DA. Kuhlmann. M. Treusch. R. Plönjes. E. Burmeister. F. Bergh. M. Caleman. C. Huldt. G. Seibert. MM. Hajdu. J. Femtosecond time-delay X-ray holography. Nature. 2007-08-09. 448. 7154. 676–679. 10.1038/nature06049. free. 17687320. 2007Natur.448..676C.
  32. Hajdu, J., Hodgson, K., Miao, J., van der Spoel, D., Neutze, R., Robinson, C.V., Faigel, G., Jacobsen, C., Kirz, J., Sayre, D., Weckert, E., Materlik, G., Szoke, A. Structural studies on single particles and biomolecules. In LCLS: The First Experiments. pp. 35-62. Published in 2000 by SSRL, SLAC, Stanford, USA, SLAC-R-611 (2000). http://www-ssrl.slac.stanford.edu/lcls/papers/lcls_experiments_2.pdfhttps://science.osti.gov/-/media/bes/besac/pdf/Oct_00_minutes.pdf
  33. Hajdu. J. Chapman. HN. Ultrafast coherent diffraction imaging of single particles, clusters and biomolecules. Technical Design Report. DESY 2006-097. 3935702175. Verlag: Deutsches Elektronen-Synchrotron. 352–386. 2006. 10.2172/900146. free.
  34. Altarelli. M. Brinkmann. R. Chergui. M. Decking. W. Dobson. B. Düsterer. S. Grübel. G. Graeff. W. Graafsma. H. Hajdu. J. Marangos. J. Pflüger. J. Redlin. H. Riley. D. Robinson. I. Rossbach. J. Schwarz. A. Tiedtke. K. Tschentscher. T. Vartaniants. I. Wabnitz. H. Weise. H. Wichmann. R. Witte. K. Wolf. A. Wulff. M. Yurkov. M. The European x-ray free-electron laser.. DESY 2006-097. 3935702175. 2006. 10.3204/DESY_06-097. free.
  35. https://eli-laser.eu/media/1019/eli-whitebook.pdf
  36. Tajima, T., Barish, B., Barty, C., Bulanov, S., Chen, P., Feldhaus, J., Hajdu, J., Keitel, C., Kieffer, J., Ko, D., Leemans, W., Normand, D., Palumbo, L., Rzazewski, K., Sergeev, A., Sheng, Z., Takasaki, F., and Teshima, M., Science of Extreme Light Infrastructure, in AIP Proceedings 1228 “Light at Extreme Intensities Opportunities and Technological Issues of the Extreme Light Infrastructure”, ed. D. Dumitras, AIP, NY (2010). https://authors.library.caltech.edu/records/rzkfx-e7074
  37. Web site: Kungl. Vetenskaps-Societeten .
  38. https://mta.hu/
  39. Web site: Köztestületi tagok .
  40. Web site: Aminoff Prize rewards explosive studies of biological macromolecules . 14 September 2020 .
  41. Web site: Royal honour for Professor Janos Hajdu of Uppsala University | Laboratory of Molecular Biophysics . 17 June 2022 .
  42. Web site: Fabinyi Rudolf Emlékérem .
  43. Web site: The Rudbeck Medal - Uppsala University . 21 August 2024 .
  44. Web site: (IUCr) Journal of Applied Crystallography .