\alpha,\beta | |
P | |
n |
(x)
The Jacobi transform of a function
F(x)
J\{F(x)\}=f\alpha,\beta(n)=
1 | |
\int | |
-1 |
(1-x)\alpha (1+x)\beta
\alpha,\beta | |
P | |
n |
(x) F(x) dx
The inverse Jacobi transform is given by
J-1\{f\alpha,\beta(n)\}=F(x)=
infty | |
\sum | |
n=0 |
1 | |
\deltan |
f\alpha,\beta(n)
\alpha,\beta | |
P | |
n |
(x), where \deltan=
2\alpha+\beta+1\Gamma(n+\alpha+1)\Gamma(n+\beta+1) | |
n!(\alpha+\beta+2n+1)\Gamma(n+\alpha+\beta+1) |
F(x) | f\alpha,\beta(n) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xm, m<n | 0 | ||||||||||||
xn | n!(\alpha+\beta+2n+1)\deltan | ||||||||||||
(x) | \deltan\deltam, | ||||||||||||
(1+x)a-\beta | \binom{n+\alpha}{n}2\alpha+a+1
| ||||||||||||
(1-x)\sigma-\alpha, \Re\sigma>-1 |
| ||||||||||||
(1-x)\sigma-\beta
(x), \Re\sigma>-1 |
| ||||||||||||
2\alpha+\betaQ-1(1-z+Q)-\alpha(1+z+Q)-\beta, Q=(1-2xz+z2)1/2, | z | <1\, |
\deltanzn | ||||||||||
(1-x)-\alpha(1+x)-\beta
\left[(1-x)\alpha+1(1+x)\beta+1
\right]F(x) | -n(n+\alpha+\beta+1)f\alpha,\beta(n) | ||||||||||||
\left\{(1-x)-\alpha(1+x)-\beta
\left[(1-x)\alpha+1(1+x)\beta+1
\right]\right\}kF(x) | (-1)knk(n+\alpha+\beta+1)kf\alpha,\beta(n) |