Isotopes of ytterbium explained

Naturally occurring ytterbium (70Yb) is composed of seven stable isotopes:[1] 168Yb, 170Yb - 174Yb, and 176Yb, with 174Yb being the most abundant (31.83% natural abundance). 30 radioisotopes have been characterized, with the most stable being 169Yb with a half-life of 32.014 days, 175Yb with a half-life of 4.185 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than 2 hours, and the majority of these have half-lives that are less than 20 minutes. This element also has 18 meta states, with the most stable being 169mYb (t1/2 46 seconds).

The isotopes of ytterbium range from 149Yb to 187Yb. The primary decay mode before the most abundant stable isotope, 174Yb is electron capture, and the primary mode after is beta emission. The primary decay products before 174Yb are isotopes of thulium, and the primary products after are isotopes of lutetium. Of interest to modern quantum optics, the different ytterbium isotopes follow either Bose–Einstein statistics or Fermi–Dirac statistics, leading to interesting behavior in optical lattices.

List of isotopes

|-id=Ytterbium-149|rowspan=2| 149Yb|rowspan=2 style="text-align:right" | 70|rowspan=2 style="text-align:right" | 79|rowspan=2| 148.96422(32)#|rowspan=2| 0.7(2) s| β+, p| 148Er|rowspan=2| (1/2+)|rowspan=2||rowspan=2||-| β+ (rare)| 149Tm|-id=Ytterbium-150| 150Yb| style="text-align:right" | 70| style="text-align:right" | 80| 149.95831(32)#| 700# ms [>200&nbsp;ns]| β+?| 150Tm?| 0+|||-id=Ytterbium-151| rowspan=2|151Yb| rowspan=2 style="text-align:right" | 70| rowspan=2 style="text-align:right" | 81| rowspan=2|150.95540(32)| rowspan=2|1.6(5) s| β+| 151Tm| rowspan=2|(1/2+)| rowspan=2|| rowspan=2||-| β+, p (rare)| 150Er|-id=Ytterbium-151m1| rowspan=2 style="text-indent:1em" | 151m1Yb| rowspan=2 colspan="3" style="text-indent:2em" | 740(100)# keV| rowspan=2|1.6(5) s| β+| 151Tm| rowspan=2|(11/2−)| rowspan=2|| rowspan=2||-| β+, p (rare)| 150Er|-id=Ytterbium-151m2| style="text-indent:1em" | 151m2Yb| colspan="3" style="text-indent:2em" | 2630(141)# keV| 2.6(7) μs|IT|151Yb| 19/2−#|||-id=Ytterbium-151m3| style="text-indent:1em" | 151m3Yb| colspan="3" style="text-indent:2em" | 3287(141)# keV| 20(1) μs|IT|151Yb| 27/2−#|||-id=Ytterbium-152|152Yb|style="text-align:right" | 70|style="text-align:right" | 82|151.95033(16)|3.03(6) s| β+| 152Tm|0+|||-id=Ytterbium-152m| style="text-indent:1em" | 152mYb| colspan="3" style="text-indent:2em" | 2744.5(10) keV| 30(1) μs|IT|152Yb| (10+)|||-id=Ytterbium-153| rowspan=2|153Yb| rowspan=2 style="text-align:right" | 70| rowspan=2 style="text-align:right" | 83| rowspan=2|152.94937(22)#| rowspan=2|4.2(2) s| β+| 153Tm| rowspan=2|7/2−| rowspan=2||-| β+, p (0.008%)| 152Er|-id=Ytterbium-153m| style="text-indent:1em" | 153mYb| colspan="3" style="text-indent:2em" | 2630(50)# keV| 15(1) μs|IT|153Yb| 27/2−|||-id=Ytterbium-154| rowspan=2|154Yb| rowspan=2 style="text-align:right" | 70| rowspan=2 style="text-align:right" | 84| rowspan=2|153.946396(19)| rowspan=2|0.409(2) s| α (92.6%)| 150Er| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+ (7.4%)| 154Tm|-id=Ytterbium-155| rowspan=2|155Yb| rowspan=2 style="text-align:right" | 70| rowspan=2 style="text-align:right" | 85| rowspan=2|154.945783(18)| rowspan=2|1.793(20) s| α (89%)| 151Er| rowspan=2|(7/2−)| rowspan=2|| rowspan=2||-| β+ (11%)| 155Tm|-id=Ytterbium-156| rowspan=2|156Yb| rowspan=2 style="text-align:right" | 70| rowspan=2 style="text-align:right" | 86| rowspan=2|155.942817(10)| rowspan=2|26.1(7) s| β+ (90%)| 156Tm| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (10%)| 152Er|-id=Ytterbium-157| rowspan=2|157Yb| rowspan=2 style="text-align:right" | 70| rowspan=2 style="text-align:right" | 87| rowspan=2|156.942651(12)| rowspan=2|38.6(10) s| β+| 157Tm| rowspan=2|7/2−| rowspan=2|| rowspan=2||-| α (rare)| 153Er|-id=Ytterbium-158| rowspan=2|158Yb| rowspan=2 style="text-align:right" | 70| rowspan=2 style="text-align:right" | 88| rowspan=2|157.939871(9)| rowspan=2|1.49(13) min| β+ (99.99%)| 158Tm| rowspan=2|0+| rowspan=2|| rowspan=2||-| α (.0021%)| 154Er|-id=Ytterbium-159| 159Yb| style="text-align:right" | 70| style="text-align:right" | 89| 158.940060(19)| 1.67(9) min| β+| 159Tm| 5/2−|||-id=Ytterbium-160| 160Yb| style="text-align:right" | 70| style="text-align:right" | 90| 159.937559(6)| 4.8(2) min| β+| 160Tm| 0+|||-id=Ytterbium-161| 161Yb| style="text-align:right" | 70| style="text-align:right" | 91| 160.937912(16)| 4.2(2) min| β+| 161Tm| 3/2−|||-id=Ytterbium-162| 162Yb| style="text-align:right" | 70| style="text-align:right" | 92| 161.935779(16)| 18.87(19) min| β+| 162Tm| 0+|||-id=Ytterbium-163| 163Yb| style="text-align:right" | 70| style="text-align:right" | 93| 162.936345(16)| 11.05(35) min| β+| 163Tm| 3/2−|||-id=Ytterbium-164| 164Yb| style="text-align:right" | 70| style="text-align:right" | 94| 163.934501(16)| 75.8(17) min| EC| 164Tm| 0+|||-id=Ytterbium-165| 165Yb| style="text-align:right" | 70| style="text-align:right" | 95| 164.935270(28)| 9.9(3) min| β+| 165Tm| 5/2−|||-id=Ytterbium-165m| style="text-indent:1em" | 165mYb| colspan="3" style="text-indent:2em" | 126.80(9) keV| 300(30) ns|IT|165Yb|9/2+|||-id=Ytterbium-166| 166Yb| style="text-align:right" | 70| style="text-align:right" | 96| 165.933876(8)| 56.7(1) h| EC| 166Tm| 0+|||-id=Ytterbium-167| 167Yb| style="text-align:right" | 70| style="text-align:right" | 97| 166.934954(4)| 17.5(2) min| β+| 167Tm| 5/2−|||-id=Ytterbium-167m| style="text-indent:1em" | 167mYb| colspan="3" style="text-indent:2em" | 571.548(22) keV| ~180 ns|IT|167Yb| 11/2−|||-id=Ytterbium-168| 168Yb| style="text-align:right" | 70| style="text-align:right" | 98| 167.9338913(1)| colspan=3 align=center|Observationally Stable[2] | 0+| 0.00123(3)||-id=Ytterbium-169| 169Yb| style="text-align:right" | 70| style="text-align:right" | 99| 168.93518421(19)| 32.014(5) d| EC| 169Tm| 7/2+|||-id=Ytterbium-169m| style="text-indent:1em" | 169mYb| colspan="3" style="text-indent:2em" | 24.1999(16) keV| 46(2) s| IT| 169Yb| 1/2−|||-id=Ytterbium-170| 170Yb| style="text-align:right" | 70| style="text-align:right" | 100| 169.934767243(11)| colspan=3 align=center|Observationally Stable[3] | 0+| 0.02982(39)||-id=Ytterbium-170m| style="text-indent:1em" | 170mYb| colspan="3" style="text-indent:2em" | 1258.46(14) keV| 370(15) ns|IT|170Yb| 4−|||-id=Ytterbium-171| 171Yb| style="text-align:right" | 70| style="text-align:right" | 101| 170.936331515(14)| colspan=3 align=center|Observationally Stable[4] | 1/2−| 0.14086(140)||-id=Ytterbium-171m1| style="text-indent:1em" | 171m1Yb| colspan="3" style="text-indent:2em" | 95.282(2) keV| 5.25(24) ms| IT| 171Yb| 7/2+|||-id=Ytterbium-171m2| style="text-indent:1em" | 171m2Yb| colspan="3" style="text-indent:2em" | 122.416(2) keV| 265(20) ns|IT|171Yb| 5/2−|||-id=Ytterbium-172| 172Yb| style="text-align:right" | 70| style="text-align:right" | 102| 171.936386654(15)| colspan=3 align=center|Observationally Stable[5] | 0+| 0.21686(130)||-id=Ytterbium-172m| style="text-indent:1em" | 172mYb| colspan="3" style="text-indent:2em" | 1550.43(6) keV| 3.6(1) μs|IT|172Yb| 6−|||-id=Ytterbium-173| 173Yb| style="text-align:right" | 70| style="text-align:right" | 103| 172.938216212(12)| colspan=3 align=center|Observationally Stable[6] | 5/2−| 0.16103(63)||-id=Ytterbium-173m| style="text-indent:1em" | 173mYb| colspan="3" style="text-indent:2em" | 398.9(5) keV| 2.9(1) μs|IT|173Yb| 1/2−|||-id=Ytterbium-174| 174Yb| style="text-align:right" | 70| style="text-align:right" | 104| 173.938867546(12)| colspan=3 align=center|Observationally Stable[7] | 0+| 0.32025(80)||-id=Ytterbium-174m1| style="text-indent:1em" | 174m1Yb| colspan="3" style="text-indent:2em" | 1518.148(13) keV| 830(40) μs| IT| 174Yb| 6+|||-id=Ytterbium-174m2| style="text-indent:1em" | 174m2Yb| colspan="3" style="text-indent:2em" | 1765.2(5) keV| 256(11) ns| IT| 174Yb| 7−|||-id=Ytterbium-175| 175Yb| style="text-align:right" | 70| style="text-align:right" | 105| 174.94128191(8)| 4.185(1) d| β| 175Lu| 7/2−|||-id=Ytterbium-175m| style="text-indent:1em" | 175mYb| colspan="3" style="text-indent:2em" | 514.866(4) keV| 68.2(3) ms|IT|175Yb| 1/2−|||-id=Ytterbium-176| 176Yb| style="text-align:right" | 70| style="text-align:right" | 106| 175.942574706(16)| colspan=3 align=center|Observationally Stable[8] | 0+| 0.12995(83)||-id=Ytterbium-176m|rowspan=2 style="text-indent:1em" | 176mYb|rowspan=2 colspan="3" style="text-indent:2em" | 1049.8(6) keV|rowspan=2|11.4(3) s|IT|176Yb|rowspan=2| 8−|rowspan=2||rowspan=2||-|β (<10#%)|176Lu|-id=Ytterbium-177| 177Yb| style="text-align:right" | 70| style="text-align:right" | 107| 176.94526385(24)| 1.911(3) h| β| 177Lu| 9/2+|||-id=Ytterbium-177m| style="text-indent:1em" | 177mYb| colspan="3" style="text-indent:2em" | 331.5(3) keV| 6.41(2) s| IT| 177Yb| 1/2−|||-id=Ytterbium-178| 178Yb| style="text-align:right" | 70| style="text-align:right" | 108| 177.946669(7)| 74(3) min| β| 178Lu| 0+|||-id=Ytterbium-179| 179Yb| style="text-align:right" | 70| style="text-align:right" | 109| 178.94993(22)#| 8.0(4) min| β| 179Lu| (1/2−)|||-id=Ytterbium-180| 180Yb| style="text-align:right" | 70| style="text-align:right" | 110| 179.95199(32)#| 2.4(5) min| β| 180Lu| 0+|||-id=Ytterbium-181| 181Yb| style="text-align:right" | 70| style="text-align:right" | 111| 180.95589(32)#| 1# min [>300&nbsp;ns]| β?| 181Lu?| 3/2−#|||-id=Ytterbium-182| 182Yb[9] | style="text-align:right" | 70| style="text-align:right" | 112| 181.95824(43)#| 30# s [>300&nbsp;ns]| β?| 182Lu?| 0+|||-id=Ytterbium-183| 183Yb| style="text-align:right" | 70| style="text-align:right" | 113| 182.96243(43)#| 30# s [>300&nbsp;ns]| β?| 183Lu?| 3/2−#|||-id=Ytterbium-184| 184Yb| style="text-align:right" | 70| style="text-align:right" | 114| 183.96500(54)#| 7# s [>300&nbsp;ns]| β?| 184Lu?| 0+|||-id=Ytterbium-185| 185Yb| style="text-align:right" | 70| style="text-align:right" | 115| 184.96943(54)#| 5# s [>300&nbsp;ns]| β?| 185Lu?| 9/2−#|||-id=Ytterbium-186| 186Yb[10] | style="text-align:right" | 70| style="text-align:right" | 116|| ||| 0+|||-id=Ytterbium-187| 187Yb[10] | style="text-align:right" | 70| style="text-align:right" | 117|| |||||

References

Notes and References

  1. However, all seven of the isotopes are observationally stable, meaning that they are predicted to be radioactive but decay has not been observed yet.
  2. Believed to undergo α decay to 164Er or β+β+ decay to 168Er with a half-life over 130×1012 years
  3. Believed to undergo α decay to 166Er
  4. Believed to undergo α decay to 167Er
  5. Believed to undergo α decay to 168Er
  6. Believed to undergo α decay to 169Er
  7. Believed to undergo α decay to 170Er
  8. Believed to undergo α decay to 172Er or ββ decay to 176Hf with a half-life over 160×1015 years
  9. Cluster decay daughter of 232Th
  10. O. B. . Tarasov . A. . Gade . K. . Fukushima . et al. . Observation of New Isotopes in the Fragmentation of 198Pt at FRIB . Physical Review Letters . 132 . 072501 . 2024 . 10.1103/PhysRevLett.132.072501.