Isotopes of neodymium explained

Naturally occurring neodymium (60Nd) is composed of five stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and two long-lived radioisotopes, 144Nd and 150Nd. In all, 35 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of years) and 150Nd (double beta decay, t1/2 of years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 15 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

The primary decay modes for isotopes lighter than the most abundant stable isotope (also the only theoretically stable isotope), 142Nd, are electron capture and positron decay, and the primary mode for heavier radioisotopes is beta decay. The primary decay products for lighter radioisotopes are praseodymium isotopes and the primary products for heavier ones are promethium isotopes.

Neodymium isotopes as fission products

Neodymium is one of the more common fission products that results from the splitting of uranium-233, uranium-235, plutonium-239 and plutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.[1] [2] [3]

List of isotopes

|-id=Neodymium-124| 124Nd| style="text-align:right" | 60| style="text-align:right" | 64| 123.95223(64)#| 500# ms||| 0+|||-id=Neodymium-125| 125Nd| style="text-align:right" | 60| style="text-align:right" | 65| 124.94888(43)#| 600(150) ms||| 5/2(+#)|||-id=Neodymium-126| 126Nd| style="text-align:right" | 60| style="text-align:right" | 66| 125.94322(43)#| 1# s [>200 ns]| β+| 126Pr| 0+|||-id=Neodymium-127| rowspan=2|127Nd| rowspan=2 style="text-align:right" | 60| rowspan=2 style="text-align:right" | 67| rowspan=2|126.94050(43)#| rowspan=2|1.8(4) s| β+| 127Pr| rowspan=2|5/2+#| rowspan=2|| rowspan=2||-| β+, p (rare)| 126Ce|-id=Neodymium-128| rowspan=2|128Nd| rowspan=2 style="text-align:right" | 60| rowspan=2 style="text-align:right" | 68| rowspan=2|127.93539(21)#| rowspan=2|5# s| β+| 128Pr| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+, p (rare)| 127Ce|-id=Neodymium-129| rowspan=2|129Nd| rowspan=2 style="text-align:right" | 60| rowspan=2 style="text-align:right" | 69| rowspan=2|128.93319(22)#| rowspan=2|4.9(2) s| β+| 129Pr| rowspan=2|5/2+#| rowspan=2| | rowspan=2||-| β+, p (rare)| 128Ce|-id=Neodymium-130| 130Nd| style="text-align:right" | 60| style="text-align:right" | 70| 129.92851(3)| 21(3) s| β+| 130Pr| 0+|||-id=Neodymium-131| rowspan=2|131Nd| rowspan=2 style="text-align:right" | 60| rowspan=2 style="text-align:right" | 71| rowspan=2|130.92725(3)| rowspan=2|33(3) s| β+| 131Pr| rowspan=2|(5/2)(+#)| rowspan=2| | rowspan=2||-| β+, p (rare)| 130Ce|-id=Neodymium-132| 132Nd| style="text-align:right" | 60| style="text-align:right" | 72| 131.923321(26)| 1.56(10) min| β+| 132Pr| 0+|||-id=Neodymium-133| 133Nd| style="text-align:right" | 60| style="text-align:right" | 73| 132.92235(5)| 70(10) s| β+| 133Pr| (7/2+)|||-id=Neodymium-133m1| style="text-indent:1em" | 133m1Nd| colspan="3" style="text-indent:2em" | 127.97(11) keV| ~70 s| β+| 133Pr| (1/2)+|||-id=Neodymium-133m2| style="text-indent:1em" | 133m2Nd| colspan="3" style="text-indent:2em" | 176.10(10) keV| ~300 ns||| (9/2–)|||-id=Neodymium-134| 134Nd| style="text-align:right" | 60| style="text-align:right" | 74| 133.918790(13)| 8.5(15) min| β+| 134Pr| 0+|||-id=Neodymium-134m| style="text-indent:1em" | 134mNd| colspan="3" style="text-indent:2em" | 2293.1(4) keV| 410(30) μs||| (8)–|||-id=Neodymium-135| 135Nd| style="text-align:right" | 60| style="text-align:right" | 75| 134.918181(21)| 12.4(6) min| β+| 135Pr| 9/2(–)|||-id=Neodymium-135m| style="text-indent:1em" | 135mNd| colspan="3" style="text-indent:2em" | 65.0(2) keV| 5.5(5) min| β+| 135Pr| (1/2+)|||-id=Neodymium-136| 136Nd| style="text-align:right" | 60| style="text-align:right" | 76| 135.914976(13)| 50.65(33) min| β+| 136Pr| 0+|||-id=Neodymium-137| 137Nd| style="text-align:right" | 60| style="text-align:right" | 77| 136.914567(12)| 38.5(15) min| β+| 137Pr| 1/2+|||-id=Neodymium-137m| style="text-indent:1em" | 137mNd| colspan="3" style="text-indent:2em" | 519.43(17) keV| 1.60(15) s| IT| 137Nd| (11/2–)|||-id=Neodymium-138| 138Nd| style="text-align:right" | 60| style="text-align:right" | 78| 137.911950(13)| 5.04(9) h| β+| 138Pr| 0+|||-id=Neodymium-138m| style="text-indent:1em" | 138mNd| colspan="3" style="text-indent:2em" | 3174.9(4) keV| 410(50) ns||| (10+)|||-id=Neodymium-139| 139Nd| style="text-align:right" | 60| style="text-align:right" | 79| 138.911978(28)| 29.7(5) min| β+| 139Pr| 3/2+|||-id=Neodymium-139m1| rowspan=2 style="text-indent:1em" | 139m1Nd| rowspan=2 colspan="3" style="text-indent:2em" | 231.15(5) keV| rowspan=2|5.50(20) h| β+ (88.2%)| 139Pr| rowspan=2|11/2–| rowspan=2|| rowspan=2||-| IT (11.8%)| 139Nd|-id=Neodymium-139m2| style="text-indent:1em" | 139m2Nd| colspan="3" style="text-indent:2em" | 2570.9+X keV| ≥141 ns||||||-id=Neodymium-140| 140Nd| style="text-align:right" | 60| style="text-align:right" | 80| 139.90955(3)| 3.37(2) d| EC| 140Pr| 0+|||-id=Neodymium-140m| style="text-indent:1em" | 140mNd| colspan="3" style="text-indent:2em" | 2221.4(1) keV| 600(50) μs||| 7–|||-id=Neodymium-141| 141Nd| style="text-align:right" | 60| style="text-align:right" | 81| 140.909610(4)| 2.49(3) h| β+| 141Pr| 3/2+|||-id=Neodymium-141m| rowspan=2 style="text-indent:1em" | 141mNd| rowspan=2 colspan="3" style="text-indent:2em" | 756.51(5) keV| rowspan=2|62.0(8) s| IT (99.95%)| 141Nd| rowspan=2|11/2–| rowspan=2|| rowspan=2||-| β+ (.05%)| 141Pr|-id=Neodymium-142| 142Nd| style="text-align:right" | 60| style="text-align:right" | 82| 141.9077233(25)| colspan=3 align=center|Stable| 0+| 0.272(5)| 0.2680–0.2730|-id=Neodymium-143| 143Nd[4] | style="text-align:right" | 60| style="text-align:right" | 83| 142.9098143(25)| colspan=3 align=center|Observationally Stable| 7/2−| 0.122(2)| 0.1212–0.1232|-id=Neodymium-144| 144Nd[5] | style="text-align:right" | 60| style="text-align:right" | 84| 143.9100873(25)| 2.29(16)×1015 y| α| 140Ce| 0+| 0.238(3)| 0.2379–0.2397|-id=Neodymium-145| 145Nd| style="text-align:right" | 60| style="text-align:right" | 85| 144.9125736(25)| colspan=3 align=center|Observationally Stable| 7/2−| 0.083(1)| 0.0823–0.0835|-id=Neodymium-146| 146Nd| style="text-align:right" | 60| style="text-align:right" | 86| 145.9131169(25)| colspan=3 align=center|Observationally Stable| 0+| 0.172(3)| 0.1706–0.1735|-id=Neodymium-147| 147Nd| style="text-align:right" | 60| style="text-align:right" | 87| 146.9161004(25)| 10.98(1) d| β| 147Pm| 5/2−|||-id=Neodymium-148| 148Nd| style="text-align:right" | 60| style="text-align:right" | 88| 147.916893(3)| colspan=3 align=center|Observationally Stable| 0+| 0.057(1)| 0.0566–0.0578|-id=Neodymium-149| 149Nd| style="text-align:right" | 60| style="text-align:right" | 89| 148.920149(3)| 1.728(1) h| β| 149Pm| 5/2−|||-id=Neodymium-150| 150Nd[6] | style="text-align:right" | 60| style="text-align:right" | 90| 149.920891(3)| 9.3(7)×1018 y| ββ| 150Sm| 0+| 0.056(2)| 0.0553–0.0569|-id=Neodymium-151| 151Nd| style="text-align:right" | 60| style="text-align:right" | 91| 150.923829(3)| 12.44(7) min| β| 151Pm| 3/2+|||-id=Neodymium-152| 152Nd| style="text-align:right" | 60| style="text-align:right" | 92| 151.924682(26)| 11.4(2) min| β| 152Pm| 0+|||-id=Neodymium-153| 153Nd| style="text-align:right" | 60| style="text-align:right" | 93| 152.927698(29)| 31.6(10) s| β| 153Pm| (3/2)−|||-id=Neodymium-154| 154Nd| style="text-align:right" | 60| style="text-align:right" | 94| 153.92948(12)| 25.9(2) s| β| 154Pm| 0+|||-id=Neodymium-154m1| style="text-indent:1em" | 154m1Nd| colspan="3" style="text-indent:2em" | 480(150)# keV| 1.3(5) μs||||||-id=Neodymium-154m2| style="text-indent:1em" | 154m2Nd| colspan="3" style="text-indent:2em" | 1349(10) keV| >1 μs||| (5−)|||-id=Neodymium-155| 155Nd| style="text-align:right" | 60| style="text-align:right" | 95| 154.93293(16)#| 8.9(2) s| β| 155Pm| 3/2−#|||-id=Neodymium-156| 156Nd| style="text-align:right" | 60| style="text-align:right" | 96| 155.93502(22)| 5.49(7) s| β| 156Pm| 0+|||-id=Neodymium-156m| style="text-indent:1em" | 156mNd| colspan="3" style="text-indent:2em" | 1432(5) keV| 135 ns||| 5−|||-id=Neodymium-157| 157Nd| style="text-align:right" | 60| style="text-align:right" | 97| 156.93903(21)#| 1.17(4) s[7] | β| 157Pm| 5/2−#|||-id=Neodymium-158| 158Nd| style="text-align:right" | 60| style="text-align:right" | 98| 157.94160(43)#| 810(30) ms| β| 158Pm| 0+|||-id=Neodymium-158m| style="text-indent:1em" | 158mNd| colspan="3" style="text-indent:2em" | 1648.1(14) keV| | IT| 160Nd| (6−)|||-id=Neodymium-159| 159Nd| style="text-align:right" | 60| style="text-align:right" | 99| 158.94609(54)#| 500(30) ms| β| 159Pm| 7/2+#|||-id=Neodymium-160| 160Nd| style="text-align:right" | 60| style="text-align:right" | 100| 159.94909(64)#| 439(37) ms| β| 160Pm| 0+|||-id=Neodymium-160m| style="text-indent:1em" | 160mNd| colspan="3" style="text-indent:2em" | 1107.9(9) keV| | IT| 160Nd| (4−)|||-id=Neodymium-161| 161Nd| style="text-align:right" | 60| style="text-align:right" | 101| 160.95388(75)#| 215(76) ms| β| 161Pm| 1/2−#|||-id=Neodymium-162| 162Nd| style="text-align:right" | 60| style="text-align:right" | 102| | 310(200) ms| β| 162Pm| 0+|||-id=Neodymium-163| 163Nd| style="text-align:right" | 60| style="text-align:right" | 103| | 80# ms| β| 163Pm| 5/2−#||

References

Notes and References

  1. U and Nd Isotopes from the New Oklo Reactor 10 (GABON): Evidence for Radioelements Migration . 10.1557/PROC-257-489 . 1991 . Hemond . C. . Menet . C. . Menager . M.T. . MRS Proceedings . 257 .
  2. Web site: Oklo's Natural Nuclear Reactors . 24 October 2020 .
  3. Web site: The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates .
  4. Fission product
  5. [Primordial nuclide|Primordial]
  6. Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half-lives
  7. Hartley . D. J. . Kondev . F. G. . Carpenter . M. P. . Clark . J. A. . Copp . P. . Kay . B. . Lauritsen . T. . Savard . G. . Seweryniak . D. . Wilson . G. L. . Wu . J. . First β-decay spectroscopy study of 157Nd . Physical Review C . American Physical Society (APS) . 108 . 2 . 2023-08-14 . 024307 . 2469-9985 . 10.1103/physrevc.108.024307. 2023PhRvC.108b4307H . 260913513 .