Isotopes of krypton explained

There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 69 through 102.[1] [2] Naturally occurring krypton is made of five stable isotopes and one which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere.

List of isotopes

|-id=Krypton-67| rowspan=2|67Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 31| rowspan=2|66.98331(46)#| rowspan=2|7.4(29) ms| β+? (63%)| 67Br| rowspan=2|3/2-#| rowspan=2|| rowspan=2||-|2p (37%)|65Se|-id=Krypton-68| rowspan=3|68Kr| rowspan=3 style="text-align:right" | 36| rowspan=3 style="text-align:right" | 32| rowspan=3|67.97249(54)#| rowspan=3|21.6(33) ms| β+, p (>90%)| 67Se| rowspan=3|0+| rowspan=3|| rowspan=3||-|β+? (<10%)|68Br|-|p?|67Br|-id=Krypton-69| rowspan=2|69Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 33| rowspan=2|68.96550(32)#| rowspan=2|27.9(8) ms| β+, p (94%)| 68Se| rowspan=2|(5/2−)| rowspan=2|| rowspan=2||-| β+ (6%)| 69Br|-id=Krypton-70| rowspan=2|70Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 34| rowspan=2|69.95588(22)#| rowspan=2|45.00(14) ms| β+ (>98.7%)| 70Br| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+, p (<1.3%)| 69Se|-id=Krypton-71| rowspan=2|71Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 35| rowspan=2|70.95027(14)| rowspan=2|98.8(3) ms| β+ (97.9%)| 71Br| rowspan=2|(5/2)−| rowspan=2|| rowspan=2||-| β+, p (2.1%)| 70Se|-id=Krypton-72| 72Kr| style="text-align:right" | 36| style="text-align:right" | 36| 71.9420924(86)| 17.16(18) s| β+| 72Br| 0+|||-id=Krypton-73| rowspan=2|73Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 37| rowspan=2|72.9392892(71)| rowspan=2|27.3(10) s| β+ (99.75%)| 73Br| rowspan=2|(3/2)−| rowspan=2|| rowspan=2||-| β+, p (0.25%)| 72Se|-id=Krypton-73m| style="text-indent:1em" | 73mKr| colspan="3" style="text-indent:2em" | 433.55(13) keV| 107(10) ns| IT| 73Kr| (9/2+)|||-id=Krypton-74| 74Kr| style="text-align:right" | 36| style="text-align:right" | 38| 73.9330840(22)| 11.50(11) min| β+| 74Br| 0+|||-id=Krypton-75| 75Kr| style="text-align:right" | 36| style="text-align:right" | 39| 74.9309457(87)| 4.60(7) min| β+| 75Br| 5/2+|||-id=Krypton-76| 76Kr| style="text-align:right" | 36| style="text-align:right" | 40| 75.9259107(43)| 14.8(1) h| β+| 76Br| 0+|||-id=Krypton-77| 77Kr| style="text-align:right" | 36| style="text-align:right" | 41| 76.9246700(21)| 72.6(9) min| β+| 77Br| 5/2+|||-id=Krypton-77m| style="text-indent:1em" | 77mKr| colspan="3" style="text-indent:2em" | 66.50(5) keV| 118(12) ns| IT| 77Kr| 3/2−|||-id=Krypton-78| 78Kr[3] | style="text-align:right" | 36| style="text-align:right" | 42| 77.92036634(33)| align=center|9.2 y|Double EC|78Se| 0+| 0.00355(3)||-id=Krypton-79| 79Kr| style="text-align:right" | 36| style="text-align:right" | 43| 78.9200829(37)| 35.04(10) h| β+| 79Br| 1/2−|||-id=Krypton-79m| style="text-indent:1em" | 79mKr| colspan="3" style="text-indent:2em" | 129.77(5) keV| 50(3) s| IT| 79Kr| 7/2+|||-id=Krypton-80| 80Kr| style="text-align:right" | 36| style="text-align:right" | 44| 79.91637794(75)| colspan=3 align=center|Stable| 0+| 0.02286(10)||-| 81Kr[4] | style="text-align:right" | 36| style="text-align:right" | 45| 80.9165897(12)| 2.29(11)×105 y| EC| 81Br| 7/2+| [5] ||-id=Krypton-81m| rowspan=2 style="text-indent:1em" | 81mKr| rowspan=2 colspan="3" style="text-indent:2em" | 190.64(4) keV| rowspan=2|13.10(3) s| IT| 81Kr| rowspan=2|1/2−| rowspan=2|| rowspan=2||-| EC (0.0025%)| 81Br|-id=Krypton-82| 82Kr| style="text-align:right" | 36| style="text-align:right" | 46| 81.9134811537(59)| colspan=3 align=center|Stable| 0+| 0.11593(31)||-id=Krypton-83| 83Kr[6] | style="text-align:right" | 36| style="text-align:right" | 47| 82.914126516(9)| colspan=3 align=center|Stable| 9/2+| 0.11500(19)||-id=Krypton-83m1| style="text-indent:1em" | 83m1Kr| colspan="3" style="text-indent:2em" | 9.4053(8) keV| 156.8(5) ns| IT| 83Kr| 7/2+|||-id=Krypton-83m2| style="text-indent:1em" | 83m2Kr| colspan="3" style="text-indent:2em" | 41.5575(7) keV| 1.830(13) h| IT| 83Kr| 1/2−|||-id=Krypton-84| 84Kr| style="text-align:right" | 36| style="text-align:right" | 48| 83.9114977271(41)| colspan=3 align=center|Stable| 0+| 0.56987(15)||-id=Krypton-84m| style="text-indent:1em" | 84mKr| colspan="3" style="text-indent:2em" | 3236.07(18) keV| 1.83(4) μs| IT| 84Kr| 8+|||-| 85Kr| style="text-align:right" | 36| style="text-align:right" | 49| 84.9125273(21)| 10.728(7) y| β| 85Rb| 9/2+| [5] ||-id=Krypton-85m1| rowspan=2 style="text-indent:1em" | 85m1Kr| rowspan=2 colspan="3" style="text-indent:2em" | 304.871(20) keV| rowspan=2|4.480(8) h| β (78.8%)| 85Rb| rowspan=2|1/2−| rowspan=2|| rowspan=2||-| IT (21.2%)| 85Kr|-id=Krypton-85m2| style="text-indent:1em" | 85m2Kr| colspan="3" style="text-indent:2em" | 1991.8(2) keV| 1.82(5) μs
| IT| 85Kr| (17/2+)|||-| 86Kr[7] | style="text-align:right" | 36| style="text-align:right" | 50| 85.9106106247(40)| colspan=3 align=center|Observationally Stable[8] | 0+| 0.17279(41)||-id=Krypton-87| 87Kr| style="text-align:right" | 36| style="text-align:right" | 51| 86.91335476(26)| 76.3(5) min| β| 87Rb| 5/2+|||-id=Krypton-88| 88Kr| style="text-align:right" | 36| style="text-align:right" | 52| 87.9144479(28)| 2.825(19) h| β| 88Rb| 0+|||-id=Krypton-89| 89Kr| style="text-align:right" | 36| style="text-align:right" | 53| 88.9178354(23)| 3.15(4) min| β| 89Rb| 3/2+|||-id=Krypton-90| 90Kr| style="text-align:right" | 36| style="text-align:right" | 54| 89.9195279(20)| 32.32(9) s| β| 90mRb| 0+|||-id=Krypton-91| rowspan=2|91Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 55| rowspan=2|90.9238063(24)| rowspan=2|8.57(4) s| β| 91Rb| rowspan=2|5/2+| rowspan=2|| rowspan=2||-| β, n?| 90Rb|-id=Krypton-92| rowspan=2|92Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 56| rowspan=2|91.9261731(29)| rowspan=2|1.840(8) s| β (99.97%)| 92Rb| rowspan=2|0+| rowspan=2|| rowspan=2||-| β, n (0.0332%)| 91Rb|-id=Krypton-93| rowspan=2|93Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 57| rowspan=2|92.9311472(27)| rowspan=2|1.287(10) s| β (98.05%)| 93Rb| rowspan=2|1/2+| rowspan=2|| rowspan=2||-| β, n (1.95%)| 92Rb|-id=Krypton-94| rowspan=2|94Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 58| rowspan=2|93.934140(13)| rowspan=2|212(4) ms| β (98.89%)| 94Rb| rowspan=2|0+| rowspan=2|| rowspan=2||-| β, n (1.11%)| 93Rb|-id=Krypton-95| rowspan=3|95Kr| rowspan=3 style="text-align:right" | 36| rowspan=3 style="text-align:right" | 59| rowspan=3|94.939711(20)| rowspan=3|114(3) ms| β (97.13%)| 95Rb| rowspan=3|1/2+| rowspan=3|| rowspan=3||-| β, n (2.87%)| 94Rb|-| β, 2n?| 93Rb|-id=Krypton-95m| style="text-indent:1em" | 95mKr| colspan="3" style="text-indent:2em" | 195.5(3) keV| 1.582(22) μs
| IT| 85Kr| (7/2+)|||-id=Krypton-96| rowspan=2|96Kr| rowspan=2 style="text-align:right" | 36| rowspan=2 style="text-align:right" | 60| rowspan=2|95.942998(62)[9] | rowspan=2|80(8) ms| β (96.3%)| 96Rb| rowspan=2|0+| rowspan=2|| rowspan=2||-| β, n (3.7%)| 95Rb|-id=Krypton-97| rowspan=3|97Kr| rowspan=3 style="text-align:right" | 36| rowspan=3 style="text-align:right" | 61| rowspan=3|96.94909(14)| rowspan=3|62.2(32) ms| β (93.3%)| 97Rb| rowspan=3|3/2+#| rowspan=3|| rowspan=3||-| β, n (6.7%)| 96Rb|-| β, 2n?| 95Rb|-id=Krypton-98| rowspan=3|98Kr| rowspan=3 style="text-align:right" | 36| rowspan=3 style="text-align:right" | 62| rowspan=3|97.95264(32)#| rowspan=3|42.8(36) ms| β (93.0%)| 98Rb| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n (7.0%)| 97Rb|-| β, 2n?| 96Rb|-id=Krypton-99| rowspan=3|99Kr| rowspan=3 style="text-align:right" | 36| rowspan=3 style="text-align:right" | 63| rowspan=3|98.95878(43)#| rowspan=3|40(11) ms| β (89%)| 99Rb| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n (11%)| 98Rb|-| β, 2n?| 97Rb|-id=Krypton-100| rowspan=3|100Kr| rowspan=3 style="text-align:right" | 36| rowspan=3 style="text-align:right" | 64| rowspan=3|99.96300(43)#| rowspan=3|12(8) ms| β| 100Rb| rowspan=3|0+| rowspan=3|| rowspan=3||-| β, n?| 99Rb|-| β, 2n?| 98Rb|-id=Krypton-101| rowspan=3 | 101Kr| rowspan=3 | 36| rowspan=3 | 65| rowspan=3 | 100.96932(54)#| rowspan=3 | 9# ms
[>400&nbsp;ns]| β?| 101Rb| rowspan=3 | 5/2+#| rowspan=3 || rowspan=3 ||-| β, n?| 100Rb|-| β, 2n?| 99Rb|-id=Krypton-102| 102Kr[10] | style="text-align:right" | 36| style="text-align:right" | 66| | ||| 0+|||-id=Krypton-103| 103Kr[11] | style="text-align:right" | 36| style="text-align:right" | 67| | ||| ||

Notable isotopes

Krypton-81

Krypton-81 is useful in determining how old the water beneath the ground is.[12] Radioactive krypton-81 is the product of spallation reactions with cosmic rays striking gases present in the Earth atmosphere, along with the six stable or nearly stable krypton isotopes.[13] Krypton-81 has a half-life of about 229,000 years.

Krypton-81 is used for dating ancient (50,000- to 800,000-year-old) groundwater and to determine their residence time in deep aquifers. One of the main technical limitations of the method is that it requires the sampling of very large volumes of water: several hundred liters or a few cubic meters of water. This is particularly challenging for dating pore water in deep clay aquitards with very low hydraulic conductivity.[14]

Krypton-85

See main article: Krypton-85. Krypton-85 has a half-life of about 10.75 years. This isotope is produced by the nuclear fission of uranium and plutonium in nuclear weapons testing and in nuclear reactors, as well as by cosmic rays. An important goal of the Limited Nuclear Test Ban Treaty of 1963 was to eliminate the release of such radioisotopes into the atmosphere, and since 1963 much of that krypton-85 has had time to decay. However, it is inevitable that krypton-85 is released during the reprocessing of fuel rods from nuclear reactors.

Atmospheric concentration

See also: Nuclear reprocessing.

The atmospheric concentration of krypton-85 around the North Pole is about 30 percent higher than that at the Amundsen–Scott South Pole Station because nearly all of the world's nuclear reactors and all of its major nuclear reprocessing plants are located in the northern hemisphere, and also well-north of the equator.[15] To be more specific, those nuclear reprocessing plants with significant capacities are located in the United States, the United Kingdom, the French Republic, the Russian Federation, Mainland China (PRC), Japan, India, and Pakistan.

Krypton-86

Krypton-86 was formerly used to define the meter from 1960 until 1983, when the definition of the meter was based on the wavelength of the 606 nm (orange) spectral line of a krypton-86 atom.[16]

Others

All other radioisotopes of krypton have half-lives of less than one day, except for krypton-79, a positron emitter with a half-life of about 35.0 hours.

References

Sources

External links

Notes and References

  1. Web site: Chart of Nuclides . Brookhaven National Laboratory . 2011-11-21 . 2017-10-18 . https://web.archive.org/web/20171018072258/http://www.nndc.bnl.gov/chart/reCenter.jsp?z=36&n=65 . dead .
  2. Observation of new neutron-rich isotopes in the vicinity of Zr110. 10.1103/PhysRevC.103.014614. 2021. Sumikama. T.. Fukuda. N.. Inabe. N.. Kameda. D.. Kubo. T.. Shimizu. Y.. Suzuki. H.. Takeda. H.. Yoshida. K.. Baba. H.. Browne. F.. Bruce. A. M.. Carroll. R.. Chiga. N.. Daido. R.. Didierjean. F.. Doornenbal. P.. Fang. Y.. Gey. G.. Ideguchi. E.. Isobe. T.. Lalkovski. S.. Li. Z.. Lorusso. G.. Lozeva. R.. Nishibata. H.. Nishimura. S.. Nishizuka. I.. Odahara. A.. Patel. Z.. Physical Review C. 103. 1 . 014614 . 2021PhRvC.103a4614S . 10261/260248 . 234019083. 1. free.
  3. [Primordial nuclide|Primordial]
  4. Used to date groundwater
  5. Lu . Zheng-Tian . What trapped atoms reveal about global groundwater . Physics Today . 1 March 2013 . 66 . 3 . 74–75 . 10.1063/PT.3.1926 . 2013PhT....66c..74L . 29 June 2024.
  6. [Fission product]
  7. Formerly used to define the meter
  8. Believed to decay by ββ to 86Sr
  9. High-precision mass measurement of neutron-rich 96Kr. 10.1007/s10751-020-01722-2. 2020. Smith. Matthew B.. Murböck. Tobias. Dunling. Eleanor. Jacobs. Andrew. Kootte. Brian. Lan. Yang. Leistenschneider. Erich. Lunney. David. Lykiardopoulou. Eleni Marina. Mukul. Ish. Paul. Stefan F.. Reiter. Moritz P.. Will. Christian. Dilling. Jens. Kwiatkowski. Anna A.. Hyperfine Interactions. 241. 1 . 59 . 2020HyInt.241...59S . 220512482.
  10. Observation of new neutron-rich isotopes in the vicinity of Zr110. 10.1103/PhysRevC.103.014614. 2021. Sumikama. T.. Fukuda. N.. Inabe. N.. Kameda. D.. Kubo. T.. Shimizu. Y.. Suzuki. H.. Takeda. H.. Yoshida. K.. Baba. H.. Browne. F.. Bruce. A. M.. Carroll. R.. Chiga. N.. Daido. R.. Didierjean. F.. Doornenbal. P.. Fang. Y.. Gey. G.. Ideguchi. E.. Isobe. T.. Lalkovski. S.. Li. Z.. Lorusso. G.. Lozeva. R.. Nishibata. H.. Nishimura. S.. Nishizuka. I.. Odahara. A.. Patel. Z.. Physical Review C. 103. 1 . 014614 . 2021PhRvC.103a4614S . 234019083. 1. 10261/260248. free.
  11. Shimizu . Y. . Kubo . T. . Sumikama . T. . Fukuda . N. . Takeda . H. . Suzuki . H. . Ahn . D. S. . Inabe . N. . Kusaka . K. . Ohtake . M. . Yanagisawa . Y. . Yoshida . K. . Ichikawa . Y. . Isobe . T. . Otsu . H. . Sato . H. . Sonoda . T. . Murai . D. . Iwasa . N. . Imai . N. . Hirayama . Y. . Jeong . S. C. . Kimura . S. . Miyatake . H. . Mukai . M. . Kim . D. G. . Kim . E. . Yagi . A. . Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam . Physical Review C . 8 April 2024 . 109 . 4 . 044313 . 10.1103/PhysRevC.109.044313 .
  12. Le-Yi Tu, Guo-Min Yang, Cun-Feng Cheng, Gu-Liang Liu, Xiang-Yang Zhang, and Shui-Ming Hu . 2014 . Analysis of Krypton-85 and Krypton-81 in a Few Liters of Air . . 86 . 8 . 4002-4007 .
  13. Leya. I. . Gilabert. E. . Lavielle. B. . Wiechert. U. . Wieler. W. . 2004 . Production rates for cosmogenic krypton and argon isotopes in H-chondrites with known 36Cl-36Ar ages . Antarctic Meteorite Research . 17 . 185–199 . 2004AMR....17..185L .
  14. N. Thonnard . L. D. MeKay . T. C. Labotka . 2001 . Development of Laser-Based Resonance Ionization Techniques for 81-Kr and 85-Kr Measurements in the Geosciences . 4–7 . University of Tennessee, Institute for Rare Isotope Measurements . 10.2172/809813 .
  15. Web site: Resources on Isotopes . https://web.archive.org/web/20010924204348/http://wwwrcamnl.wr.usgs.gov/isoig/period/kr_iig.html . dead . 2001-09-24 . . 2007-03-20 .
  16. The International Length Standard . K. M. . Baird . L. E. . Howlett . . 2 . 5 . 455–463 . 1963 . 10.1364/AO.2.000455. 1963ApOpt...2..455B .