Isotopes of bromine explained

Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 35 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours.

Like the radioactive isotopes of iodine, radioisotopes of bromine, collectively radiobromine, can be used to label biomolecules for nuclear medicine; for example, the positron emitters 75Br and 76Br can be used for positron emission tomography.[1] [2] Radiobromine has the advantage that organobromides are more stable than analogous organoiodides, and that it is not uptaken by the thyroid like iodine.[3]

List of isotopes

|-id=Bromine-68| 68Br[4] | style="text-align:right" | 35| style="text-align:right" | 33| 67.95836(28)#| ~35 ns| p?| 67Se| 3+#|||-id=Bromine-69| 69Br| style="text-align:right" | 35| style="text-align:right" | 34| 68.950338(45)| <19 ns[4] | p| 68Se| (5/2−)|||-id=Bromine-70| rowspan=2|70Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 35| rowspan=2|69.944792(16)| rowspan=2|78.8(3) ms| β+| 70Se| rowspan=2|0+| rowspan=2|| rowspan=2||-| β+, p?| 69As|-id=Bromine-70m| rowspan=2 style="text-indent:1em" | 70mBr| rowspan=2 colspan="3" style="text-indent:2em" | 2292.3(8) keV| rowspan=2|2.16(5) s| β+| 70Se| rowspan=2|9+| rowspan=2|| rowspan=2||-| β+, p?| 69As|-id=Bromine-71| 71Br| style="text-align:right" | 35| style="text-align:right" | 36| 70.9393422(58)| 21.4(6) s| β+| 71Se| (5/2)−|||-id=Bromine-72| 72Br| style="text-align:right" | 35| style="text-align:right" | 37| 71.9365946(11)| 78.6(24) s| β+| 72Se| 1+|||-id=Bromine-72m| rowspan=2 style="text-indent:1em" | 72mBr| rowspan=2 colspan="3" style="text-indent:2em" | 100.76(15) keV| rowspan=2|10.6(3) s| IT| 72Br| rowspan=2|(3−)| rowspan=2|| rowspan=2||-| β+?| 72Se|-id=Bromine-73| 73Br| style="text-align:right" | 35| style="text-align:right" | 38| 72.9316734(72)| 3.4(2) min| β+| 73Se| 1/2−|||-id=Bromine-74| 74Br| style="text-align:right" | 35| style="text-align:right" | 39| 73.9299103(63)| 25.4(3) min| β+| 74Se| (0−)|||-id=Bromine-74m| style="text-indent:1em" | 74mBr| colspan="3" style="text-indent:2em" | 13.58(21) keV| 46(2) min| β+| 74Se| 4+|||-| rowspan=2|75Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 40| rowspan=2|74.9258106(46)| rowspan=2|96.7(13) min| β+ (76%)[3] | 75Se| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| EC (24%)| 76Se|-| rowspan=2|76Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 41| rowspan=2|75.924542(10)| rowspan=2|16.2(2) h| β+ (57%)[3] | 76Se| rowspan=2|1−| rowspan=2|| rowspan=2||-| EC (43%)| 76Se|-id=Bromine-76m| rowspan=2 style="text-indent:1em" | 76mBr| rowspan=2 colspan="3" style="text-indent:2em" | 102.58(3) keV| rowspan=2|1.31(2) s| IT (>99.4%)| 76Br| rowspan=2|(4)+| rowspan=2|| rowspan=2||-| β+ (<0.6%)| 76Se|-| rowspan=2|77Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 42| rowspan=2|76.9213792(30)| rowspan=2|57.04(12) h| EC (99.3%)[5] | 77Se| rowspan=2|3/2−| rowspan=2|| rowspan=2||-| β+ (0.7%)| 77Se|-id=Bromine-77m| style="text-indent:1em" | 77mBr| colspan="3" style="text-indent:2em" | 105.86(8) keV| 4.28(10) min| IT| 77Br| 9/2+|||-id=Bromine-78| rowspan=2|78Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 43| rowspan=2|77.9211459(38)| rowspan=2|6.45(4) min| β+ (>99.99%)| 78Se| rowspan=2|1+| rowspan=2|| rowspan=2||-| β (<0.01%)| 78Kr|-id=Bromine-78m| style="text-indent:1em" | 78mBr| colspan="3" style="text-indent:2em" | 180.89(13) keV| 119.4(10) μs| IT| 78Br| (4+)|||-id=Bromine-79| 79Br| style="text-align:right" | 35| style="text-align:right" | 44| 78.9183376(11)| colspan=3 align=center|Stable| 3/2−| 0.5065(9)||-id=Bromine-79m| style="text-indent:1em" | 79mBr| colspan="3" style="text-indent:2em" | 207.61(9) keV| 4.85(4) s| IT| 79Br| 9/2+|||-id=Bromine-80| rowspan=2|80Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 45| rowspan=2|79.9185298(11)| rowspan=2|17.68(2) min| β (91.7%)| 80Kr| rowspan=2|1+| rowspan=2|| rowspan=2||-| β+ (8.3%)| 80Se|-id=Bromine-80m| style="text-indent:1em" | 80mBr| colspan="3" style="text-indent:2em" | 85.843(4) keV| 4.4205(8) h| IT| 80Br| 5−|||-id=Bromine-81| 81Br| style="text-align:right" | 35| style="text-align:right" | 46| 80.9162882(10)| colspan=3 align=center|Stable| 3/2−| 0.4935(9)||-id=Bromine-81m| style="text-indent:1em" | 81mBr| colspan="3" style="text-indent:2em" | 536.20(9) keV| 34.6(28) μs| IT| 81Br| 9/2+|||-id=Bromine-82| 82Br| style="text-align:right" | 35| style="text-align:right" | 47| 81.9168018(10)| 35.282(7) h| β| 82Kr| 5−|||-id=Bromine-82m| rowspan=2 style="text-indent:1em" | 82mBr| rowspan=2 colspan="3" style="text-indent:2em" | 45.9492(10) keV| rowspan=2|6.13(5) min| IT (97.6%)| 82Br| rowspan=2|2−| rowspan=2|| rowspan=2||-| β (2.4%)| 82Kr|-id=Bromine-83| 83Br| style="text-align:right" | 35| style="text-align:right" | 48| 82.9151753(41)| 2.374(4) h| β| 83Kr| 3/2−|||-id=Bromine-83m| style="text-indent:1em" | 83mBr| colspan="3" style="text-indent:2em" | 3069.2(4) keV| 729(77) ns| IT| 83Br| (19/2−)|||-id=Bromine-84| 84Br| style="text-align:right" | 35| style="text-align:right" | 49| 83.9165136(17)[6] | 31.76(8) min| β| 84Kr| 2−|||-id=Bromine-84m1| style="text-indent:1em" | 84m1Br| colspan="3" style="text-indent:2em" | 193.6(15) keV[6] | 6.0(2) min| β| 84Kr| (6)−|||-id=Bromine-84m2| style="text-indent:1em" | 84m2Br| colspan="3" style="text-indent:2em" | 408.2(4) keV| <140 ns| IT| 84Br| 1+|||-id=Bromine-85| 85Br| style="text-align:right" | 35| style="text-align:right" | 50| 84.9156458(33)| 2.90(6) min| β| 85Kr| 3/2−|||-id=Bromine-86| 86Br| style="text-align:right" | 35| style="text-align:right" | 51| 85.9188054(33)| 55.1(4) s| β| 86Kr| (1−)|||-id=Bromine-87| rowspan=2|87Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 52| rowspan=2|86.9206740(34)| rowspan=2|55.68(12) s| β (97.40%)| 87Kr| rowspan=2|5/2−| rowspan=2|| rowspan=2||-| β, n (2.60%)| 86Kr|-id=Bromine-88| rowspan=2|88Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 53| rowspan=2|87.9240833(34)| rowspan=2|16.34(8) s| β (93.42%)| 88Kr| rowspan=2|(1−)| rowspan=2|| rowspan=2||-| β, n (6.58%)| 87Kr|-id=Bromine-88m| style="text-indent:1em" | 88mBr| colspan="3" style="text-indent:2em" | 270.17(11) keV| 5.51(4) μs| IT| 88Br| (4−)|||-id=Bromine-89| rowspan=2|89Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 54| rowspan=2|88.9267046(35)| rowspan=2|4.357(22) s| β (86.2%)| 89Kr| rowspan=2|(3/2−, 5/2−)| rowspan=2|| rowspan=2||-| β, n (13.8%)| 88Kr|-id=Bromine-90| rowspan=2|90Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 55| rowspan=2|89.9312928(36)| rowspan=2|1.910(10) s| β (74.7%)| 90Kr| rowspan=2|| rowspan=2|| rowspan=2||-| β, n (25.3%)| 89Kr|-id=Bromine-91| rowspan=2|91Br| rowspan=2 style="text-align:right" | 35| rowspan=2 style="text-align:right" | 56| rowspan=2|90.9343986(38)| rowspan=2|543(4) ms | β (70.5%)| 91Kr| rowspan=2|5/2−#| rowspan=2|| rowspan=2||-| β, n (29.5%)| 90Kr|-id=Bromine-92| rowspan=3|92Br| rowspan=3 style="text-align:right" | 35| rowspan=3 style="text-align:right" | 57| rowspan=3|91.9396316(72)| rowspan=3|314(16) ms| β (66.9%)| 92Kr| rowspan=3|(2−)| rowspan=3|| rowspan=3||-| β, n (33.1%)| 91Kr|-| β, 2n?| 90Kr|-id=Bromine-92m1| style="text-indent:1em" | 92m1Br| colspan="3" style="text-indent:2em" | 662(1) keV| 88(8) ns| IT| 92Br| |||-id=Bromine-92m2| style="text-indent:1em" | 92m2Br| colspan="3" style="text-indent:2em" | 1138(1) keV| 85(10) ns| IT| 92Br| |||-id=Bromine-93| rowspan=3|93Br| rowspan=3 style="text-align:right" | 35| rowspan=3 style="text-align:right" | 58| rowspan=3|92.94322(46)| rowspan=3|152(8) ms| β, n (64%)| 92Kr| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β (36%)| 93Kr|-| β, 2n?| 91Kr|-id=Bromine-94| rowspan=3|94Br| rowspan=3 style="text-align:right" | 35| rowspan=3 style="text-align:right" | 59| rowspan=3|93.94885(22)#| rowspan=3|70(20) ms| β, n (68%)| 93Kr| rowspan=3|2−#| rowspan=3|| rowspan=3||-| β (32%)| 94Kr|-| β, 2n?| 92Kr|-id=Bromine-94m| style="text-indent:1em" | 94mBr| colspan="3" style="text-indent:2em" | 294.6(5) keV| 530(15) ns| IT| 94Br| |||-id=Bromine-95| rowspan=3|95Br| rowspan=3 style="text-align:right" | 35| rowspan=3 style="text-align:right" | 60| rowspan=3|94.95293(32)#| rowspan=3|80# ms [>300&nbsp;ns]| β?| 95Kr| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| 94Kr|-| β, 2n?| 93Kr|-id=Bromine-95m| style="text-indent:1em" | 95mBr| colspan="3" style="text-indent:2em" | 537.9(5) keV| 6.8(10) μs| IT| 95Br| |||-id=Bromine-96| rowspan=3|96Br| rowspan=3 style="text-align:right" | 35| rowspan=3 style="text-align:right" | 61| rowspan=3|95.95898(32)#| rowspan=3|20# ms [>300&nbsp;ns]| β?| 96Kr| rowspan=3|| rowspan=3|| rowspan=3||-| β, n?| 95Kr|-| β, 2n?| 94Kr|-id=Bromine-96m| style="text-indent:1em" | 96mBr| colspan="3" style="text-indent:2em" | 311.5(5) keV| 3.0(9) μs| IT| 95Br| |||-id=Bromine-97| rowspan=3|97Br| rowspan=3 style="text-align:right" | 35| rowspan=3 style="text-align:right" | 62| rowspan=3|96.96350(43)#| rowspan=3|40# ms [>300&nbsp;ns]| β?| 97Kr| rowspan=3|5/2−#| rowspan=3|| rowspan=3||-| β, n?| 96Kr|-| β, 2n?| 95Kr|-id=Bromine-98| rowspan=3|98Br| rowspan=3 style="text-align:right" | 35| rowspan=3 style="text-align:right" | 63| rowspan=3|97.96989(43)#| rowspan=3|15# ms [>400&nbsp;ns]| β?| 98Kr| rowspan=3|| rowspan=3|| rowspan=3||-| β, n?| 97Kr|-| β, 2n?| 96Kr|-id=Bromine-99| 99Br[7] | style="text-align:right" | 35| style="text-align:right" | 64| | ||| | | |-id=Bromine-100| 100Br[7] | style="text-align:right" | 35| style="text-align:right" | 65| | ||| | | |-id=Bromine-101| 101Br[8] | style="text-align:right" | 35| style="text-align:right" | 66| | ||| ||

Bromine-75

Bromine-75 has a half-life of 97 minutes. This isotope undergoes β+ decay rather than electron capture about 76% of the time,[3] so it was used for diagnosis and positron emission tomography (PET) in the 1980s.[1] However, its decay product, selenium-75, produces secondary radioactivity with a longer half-life of 120.4 days.[3] [1]

Bromine-76

Bromine-76 has a half-life of 16.2 hours. While its decay is more energetic than 75Br and has lower yield of positrons (about 57% of decays),[3] bromine-76 has been preferred in PET applications since the 1980s because of its longer half-life and easier synthesis, and because its decay product, 76Se, is not radioactive.[2]

Bromine-77

Bromine-77 is the most stable radioisotope of bromine, with a half-life of 57 hours. Although β+ decay is possible for this isotope, about 99.3% of decays are by electron capture.[5] Despite its complex emission spectrum, featuring strong gamma-ray emissions at 239, 297, 521, and 579 keV,[9] 77Br was used in SPECT imaging in the 1970s.[10] However, except for longer-term tracing,[3] this is no longer considered practical due to the difficult collimator requirements and the proximity of the 521 keV line to the 511 keV annihilation radiation related to the β+ decay.[10] The Auger electrons emitted during decay are nevertheless well-suited for radiotherapy, and 77Br can possibly be paired with the imaging-suited 76Br (produced as an impurity in common synthesis routes) for this application.[1] [10]

References

Notes and References

  1. Coenen . Heinz H. . Ermert . Johannes . Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18 . Nuclear Medicine and Biology . January 2021 . 92 . 241–269 . 10.1016/j.nucmedbio.2020.07.003. 32900582 .
  2. Welch . Michael J. . Mcelvany . Karen D. . Radionuclides of Bromine for Use in Biomedical Studies . Ract . 1 October 1983 . 34 . 1–2 . 41–46 . 10.1524/ract.1983.34.12.41.
  3. Lambert . F. . Slegers . G. . Hermanne . α. . Mertens . J. . Production and Purification of 77 Br Suitable for Labeling Monoclonal Antibodies Used in Tumor Imaging . Ract . 1 June 1994 . 65 . 4 . 223–226 . 10.1524/ract.1994.65.4.223.
  4. Wimmer . K. . et al. . Discovery of 68Br in secondary reactions of radioactive beams . 2019 . Physics Letters B . 795 . 266–270 . 10.1016/j.physletb.2019.06.014 . 1906.04067. 2019PhLB..795..266W . 182953245 .
  5. Kassis . A. I. . Adelstein . S. J. . Haydock . C. . Sastry . K. S. R. . McElvany . K. D. . Welch . M. J. . Lethality of Auger Electrons from the Decay of Bromine-77 in the DNA of Mammalian Cells . Radiation Research . May 1982 . 90 . 2 . 362 . 10.2307/3575714 . 3575714 . 1982RadR...90..362K . 0033-7587.
  6. Jaries . A. . Stryjczyk . M. . Kankainen . A. . Ayoubi . L. Al . Beliuskina . O. . Canete . L. . de Groote . R. P. . Delafosse . C. . Delahaye . P. . Eronen . T. . Flayol . M. . Ge . Z. . Geldhof . S. . Gins . W. . Hukkanen . M. . Imgram . P. . Kahl . D. . Kostensalo . J. . Kujanpää . S. . Kumar . D. . Moore . I. D. . Mougeot . M. . Nesterenko . D. A. . Nikas . S. . Patel . D. . Penttilä . H. . Pitman-Weymouth . D. . Pohjalainen . I. . Raggio . A. . Ramalho . M. . Reponen . M. . Rinta-Antila . S. . de Roubin . A. . Ruotsalainen . J. . Srivastava . P. C. . Suhonen . J. . Vilen . M. . Virtanen . V. . Zadvornaya . A. . Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL . journals.aps.org . 2403.04710.
  7. Shimizu . Y. . Kubo . T. . Sumikama . T. . Fukuda . N. . Takeda . H. . Suzuki . H. . Ahn . D. S. . Inabe . N. . Kusaka . K. . Ohtake . M. . Yanagisawa . Y. . Yoshida . K. . Ichikawa . Y. . Isobe . T. . Otsu . H. . Sato . H. . Sonoda . T. . Murai . D. . Iwasa . N. . Imai . N. . Hirayama . Y. . Jeong . S. C. . Kimura . S. . Miyatake . H. . Mukai . M. . Kim . D. G. . Kim . E. . Yagi . A. . Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam . Physical Review C . 8 April 2024 . 109 . 4 . 044313 . 10.1103/PhysRevC.109.044313.
  8. Observation of new neutron-rich isotopes in the vicinity of Zr110. 10.1103/PhysRevC.103.014614. 2021. Sumikama. T.. Fukuda. N.. Inabe. N.. Kameda. D.. Kubo. T.. Shimizu. Y.. Suzuki. H.. Takeda. H.. Yoshida. K.. Baba. H.. Browne. F.. Bruce. A. M.. Carroll. R.. Chiga. N.. Daido. R.. Didierjean. F.. Doornenbal. P.. Fang. Y.. Gey. G.. Ideguchi. E.. Isobe. T.. Lalkovski. S.. Li. Z.. Lorusso. G.. Lozeva. R.. Nishibata. H.. Nishimura. S.. Nishizuka. I.. Odahara. A.. Patel. Z.. Physical Review C. 103. 1 . 014614 . 2021PhRvC.103a4614S . 234019083. 1. 10261/260248. free.
  9. Singh . Balraj . Nica . Ninel . Nuclear Data Sheets for A = 77 . Nuclear Data Sheets . May 2012 . 113 . 5 . 1115–1314 . 10.1016/j.nds.2012.05.001. 2012NDS...113.1115S .
  10. Amjed . N. . Kaleem . N. . Wajid . A.M. . Naz . A. . Ahmad . I. . Evaluation of the cross section data for the low and medium energy cyclotron production of 77Br radionuclide . Radiation Physics and Chemistry . January 2024 . 214 . 111286 . 10.1016/j.radphyschem.2023.111286.