Intruder state explained

In quantum and theoretical chemistry, an intruder state is a particular situation arising in perturbative evaluations, where the energy of the perturbers is comparable in magnitude to the energy associated to the zero order wavefunction. In this case, a divergent behavior occurs, due to the nearly zero denominator in the expression of the perturbative correction.

Multi-reference wavefunction methods are not immune.[1] [2] There are ways to identity them.[3] [4] The natural orbitals of the perturbation expansion are a useful diagnostic for detecting intruder state effects.[5] Sometimes what appears to be an intruder state is simply a change in basis.[6]

Notes and References

  1. 10.1039/a808518h. A study of FeCO+ with correlated wavefunctions. Physical Chemistry Chemical Physics. 1. 6. 967–975. 1999. Glaesemann. Kurt R.. Gordon. Mark S.. Nakano. Haruyuki. 55761535. 1999PCCP....1..967G. 2024-01-22. 2017-08-08. https://web.archive.org/web/20170808050918/http://ccl.scc.kyushu-u.ac.jp/~nakano/papers/pccp-1-967.pdf. bot: unknown.
  2. 10.1021/jp101761d. 20540550. EOMCC, MRPT, and TDDFT Studies of Charge Transfer Processes in Mixed-Valence Compounds: Application to the Spiro Molecule†. The Journal of Physical Chemistry A. 114. 33. 8764–8771. 2010. Glaesemann. Kurt R.. Govind. Niranjan. Krishnamoorthy. Sriram. Kowalski. Karol. 2010JPCA..114.8764G. 30757230.
  3. 10.1063/1.1345510. Identifying and removing intruder states in multireference Mo̸ller–Plesset perturbation theory. The Journal of Chemical Physics. 114. 9. 3913–3918. 2001. Choe. Yoong-Kee. Witek. Henryk A.. Finley. James P.. Hirao. Kimihiko. 2001JChPh.114.3913C.
  4. 10.1002/jcc.21074. 18680217. Intruder states in multireference perturbation theory: The ground state of manganese dimer. Journal of Computational Chemistry. 30. 3. 468–478. 2009. Camacho. Cristopher. Witek. Henryk A.. Yamamoto. Shigeyoshi. 10.1.1.1010.7287. 5649816. 11536/7682.
  5. 10.1063/1.478301. A natural orbital diagnostic for multiconfigurational character in correlated wave functions. The Journal of Chemical Physics. 110. 9. 4199–4207. 1999. Gordon. Mark S.. Schmidt. Michael W.. Chaban. Galina M.. Glaesemann. Kurt R.. Stevens. Walter J.. Gonzalez. Carlos. 1999JChPh.110.4199G. 20.500.12876/14794 . 480255 .
  6. 10.1021/jp101758y. 20443582. On the Ordering of Orbital Energies in High-Spin ROHF†. The Journal of Physical Chemistry A. 114. 33. 8772–8777. 2010. Glaesemann. Kurt R.. Schmidt. Michael W.. 2010JPCA..114.8772G. 12313638. 988621.