Interneuron Explained

Interneuron
Location:Nervous system

Interneurons (also called internuncial neurons, association neurons, connector neurons, or intermediate neurons) are neurons that are not specifically motor neurons or sensory neurons. Interneurons are the central nodes of neural circuits, enabling communication between sensory or motor neurons and the central nervous system (CNS).[1] They play vital roles in reflexes, neuronal oscillations,[2] and neurogenesis in the adult mammalian brain.

Interneurons can be further broken down into two groups: local interneurons and relay interneurons.[3] Local interneurons have short axons and form circuits with nearby neurons to analyze small pieces of information.[4] Relay interneurons have long axons and connect circuits of neurons in one region of the brain with those in other regions. However, interneurons are generally considered to operate mainly within local brain areas.[5] The interaction between interneurons allows the brain to perform complex functions such as learning and decision-making.

Structure

In the human brain, approximately 20–30% of the neurons in the neocortex are interneurons, and the remaining majority of neurons are pyramidal.[6] Investigations into the molecular diversity of neurons is impeded by the inability to isolate cell populations born at different times for gene expression analysis. An effective means of identifying coetaneous interneurons is neuronal birthdating.[7] This can be achieved using nucleoside analogs such as EdU.[8]

In 2008, a nomenclature for the features of GABAergic cortical interneurons was proposed, called Petilla terminology.[9]

Spinal cord

Cortex

Cerebellum

Striatum

Function

Interneurons in the CNS are primarily inhibitory, and use the neurotransmitter GABA or glycine. However, excitatory interneurons using glutamate in the CNS also exist, as do interneurons releasing neuromodulators like acetylcholine.

In addition to these general functions, interneurons in the insect CNS play a number of specific roles in different parts of the nervous system, and also are either excitatory or inhibitory. For example, in the olfactory system, interneurons are responsible for integrating information from odorant receptors and sending signals to the mushroom bodies, which are involved in learning and memory.[16] [17] In the visual system, interneurons are responsible for processing motion information and sending signals to the optic lobes, which are involved in visual navigation.[18] [19]

Interneurons are also important for coordinating complex behaviors, such as flight and locomotion. For example, interneurons in the thoracic ganglia are responsible for coordinating the activity of the leg muscles during walking[20] and flying.[21]

Interneurons' main function is to provide a neural circuit, conducting flow of signals or information between sensory neurons and motor neurons.[22]

Notes and References

  1. Web site: Types of neurons - Queensland Brain Institute - University of Queensland . 9 November 2017 .
  2. 10.1016/S0167-8760(00)00173-2 . 11102670 . Inhibition-based rhythms: Experimental and mathematical observations on network dynamics . International Journal of Psychophysiology . 38 . 3 . 315–36 . 2000 . Whittington . M.A . Traub . R.D . Kopell . N . Ermentrout . B . Buhl . E.H . 10.1.1.16.6410 .
  3. Book: Carlson, Neil R. . Physiology of Behavior . limited . Pearson Higher Education . 2013 . 28 . 978-0-205-23939-9 . 11th.
  4. Book: Eric . Kandel . James . Schwartz . Thomas . Jessell . 2000 . Principles of Neural Science . 4th . New York City, New York . McGraw Hill Companies . 25 . 978-0-8385-7701-1 . registration .
  5. Kepecs . Adam . Fishell . Gordon . Interneuron Cell Types: Fit to form and formed to fit . Nature . 2014 . 505 . 7483 . 318–326 . Nature, 2014 HHS Public Access pp 10, 28. 10.1038/nature12983 . 24429630 . 4349583 .
  6. Markram . Henry . etal . 2004 . Interneurons of the neocortical inhibitory system . Nature Reviews Neuroscience . 5 . 10. 793–807 . 10.1038/nrn1519 . 15378039. 382334 .
  7. Ng. Hui Xuan. Lee. Ean Phing. Cavanagh. Brenton L.. Britto. Joanne M.. Tan. Seong-Seng. A method for isolating cortical interneurons sharing the same birthdays for gene expression studies. Experimental Neurology. 295. 36–45. 10.1016/j.expneurol.2017.05.006. 28511841. 2017. 3377296.
  8. Endaya. Berwini. Cavanagh. Brenton. Alowaidi. Faisal. Walker. Tom. Pennington. Nicholas de. Ng. Jin-Ming A.. Lam. Paula Y.P.. Mackay-Sim. Alan. Neuzil. Jiri. Isolating dividing neural and brain tumour cells for gene expression profiling. Journal of Neuroscience Methods. 257. 121–133. 10.1016/j.jneumeth.2015.09.020. 26432933. 2016. 44969376.
  9. 10.1038/nrn2402 . 18568015 . 2868386 . Petilla terminology: Nomenclature of features of GABAergic interneurons of the cerebral cortex . Nature Reviews Neuroscience . 9 . 7 . 557–68 . 2008 . Ascoli . Giorgio A. . Alonso-Nanclares . Lidia . Anderson . Stewart A. . Barrionuevo . German . Benavides-Piccione . Ruth . Burkhalter . Andreas . Buzsáki . György . Cauli . Bruno . Defelipe . Javier . Fairén . Alfonso . Feldmeyer . Dirk . Fishell . Gord . Fregnac . Yves . Freund . Tamas F. . Gardner . Daniel . Gardner . Esther P. . Goldberg . Jesse H. . Helmstaedter . Moritz . Hestrin . Shaul . Karube . Fuyuki . Kisvárday . Zoltán F. . Lambolez . Bertrand . Lewis . David A. . Marin . Oscar . Markram . Henry . Muñoz . Alberto . Packer . Adam . Petersen . Carl C. H. . Rockland . Kathleen S. . Rossier . Jean . 29 .
  10. Muñoz. W. Tremblay. R. Levenstein. D. Rudy. B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness.. Science. 3 March 2017. 355. 6328. 954–959. 28254942. 10.1126/science.aag2599. 2017Sci...355..954M. free.
  11. 10.1038/8138 . 10321252 . 1999 . Tepper . James M. . Inhibitory control of neostriatal projection neurons by GABAergic interneurons . Nature Neuroscience . 2 . 5 . 467–72 . Koós . Tibor . 16088859 .
  12. 10.1002/neu.10150 . 12436423 . Cholinergic interneuron characteristics and nicotinic properties in the striatum . Journal of Neurobiology . 53 . 4 . 590–605 . 2002 . Zhou . Fu-Ming . Wilson . Charles J. . Dani . John A. . free .
  13. 10.1038/nn.2984 . 22158514 . 3245803 . GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons . Nature Neuroscience . 15 . 1 . 123–30 . 2011 . English . Daniel F . Ibanez-Sandoval . Osvaldo . Stark . Eran . Tecuapetla . Fatuel . Buzsáki . György . Deisseroth . Karl . Tepper . James M . Koos . Tibor .
  14. 10.1523/JNEUROSCI.5996-09.2010 . 20484642 . Electrophysiological and Morphological Characteristics and Synaptic Connectivity of Tyrosine Hydroxylase-Expressing Neurons in Adult Mouse Striatum . Journal of Neuroscience . 30 . 20 . 6999–7016 . 2010 . Ibanez-Sandoval . O. . Tecuapetla . F. . Unal . B. . Shah . F. . Koos . T. . Tepper . J. M. . 4447206.
  15. 10.3389/fnana.2010.00150 . Heterogeneity and Diversity of Striatal GABAergic Interneurons . Frontiers in Neuroanatomy . 4 . 2010 . Ibáñez-Sandoval . Osvaldo . Koós . Tibor . Tecuapetla . Fatuel . Tepper . James M. . 21228905 . 150 . 3016690. free .
  16. Liou . Nan-Fu . Lin . Shih-Han . Chen . Ying-Jun . Tsai . Kuo-Ting . Yang . Chi-Jen . Lin . Tzi-Yang . Wu . Ting-Han . Lin . Hsin-Ju . Chen . Yuh-Tarng . Gohl . Daryl M. . Silies . Marion . Chou . Ya-Hui . 2018-06-08 . Diverse populations of local interneurons integrate into the Drosophila adult olfactory circuit . Nature Communications . en . 9 . 1 . 2232 . 10.1038/s41467-018-04675-x . 2041-1723 . 5993751 . 29884811. 2018NatCo...9.2232L .
  17. Zheng . Zhihao . Li . Feng . Fisher . Corey . Ali . Iqbal J. . Sharifi . Nadiya . Calle-Schuler . Steven . Hsu . Joseph . Masoodpanah . Najla . Kmecova . Lucia . Kazimiers . Tom . Perlman . Eric . Nichols . Matthew . Li . Peter H. . Jain . Viren . Bock . Davi D. . August 2022 . Structured sampling of olfactory input by the fly mushroom body . Current Biology . 32 . 15 . 3334–3349.e6 . 10.1016/j.cub.2022.06.031 . 0960-9822 . 9413950 . 35797998.
  18. Zhu . Yan . 2013-07-29 . The Drosophila visual system: From neural circuits to behavior . Cell Adhesion & Migration . en . 7 . 4 . 333–344 . 10.4161/cam.25521 . 1933-6918 . 3739809 . 23880926.
  19. Shinomiya . Kazunori . Nern . Aljoscha . Meinertzhagen . Ian A. . Plaza . Stephen M. . Reiser . Michael B. . August 2022 . Neuronal circuits integrating visual motion information in Drosophila melanogaster . Current Biology . 32 . 16 . 3529–3544.e2 . 10.1016/j.cub.2022.06.061 . 0960-9822. free . 35839763 .
  20. Bidaye . Salil S. . Laturney . Meghan . Chang . Amy K. . Liu . Yuejiang . Bockemühl . Till . Büschges . Ansgar . Scott . Kristin . November 2020 . Two Brain Pathways Initiate Distinct Forward Walking Programs in Drosophila . Neuron . en . 108 . 3 . 469–485.e8 . 10.1016/j.neuron.2020.07.032 . 9435592 . 32822613.
  21. King . David G. . Wyman . Robert J. . 1980-12-01 . Anatomy of the giant fibre pathway inDrosophila. I. Three thoracic components of the pathway . Journal of Neurocytology . en . 9 . 6 . 753–770 . 10.1007/BF01205017 . 6782199 . 10530883 . 1573-7381.
  22. Web site: Types of Neurons. University of Queensland . 9 November 2017 . Queensland Brain Institute . 26 April 2023.