Internal energy | |
Unit: | J |
Basequantities: | m2⋅kg/s2 |
Symbols: | U |
Derivations: | \DeltaU=\sumipiEi \DeltaU=nCV\DeltaT |
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.[1] [2] It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. The internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, temperature being added to the set of state parameters, the position variables known in mechanics (and their conjugated generalized force parameters), in a similar way to potential energy of the conservative fields of force, gravitational and electrostatic. Internal energy changes equal the algebraic sum of the heat transferred and the work done. In systems without temperature changes, potential energy changes equal the work done by/on the system.
The internal energy cannot be measured absolutely. Thermodynamics concerns changes in the internal energy, not its absolute value. The processes that change the internal energy are transfers, into or out of the system, of substance, or of energy, as heat, or by thermodynamic work.[3] These processes are measured by changes in the system's properties, such as temperature, entropy, volume, electric polarization, and molar constitution. The internal energy depends only on the internal state of the system and not on the particular choice from many possible processes by which energy may pass into or out of the system. It is a state variable, a thermodynamic potential, and an extensive property.[4]
Thermodynamics defines internal energy macroscopically, for the body as a whole. In statistical mechanics, the internal energy of a body can be analyzed microscopically in terms of the kinetic energies of microscopic motion of the system's particles from translations, rotations, and vibrations, and of the potential energies associated with microscopic forces, including chemical bonds.
The unit of energy in the International System of Units (SI) is the joule (J). The internal energy relative to the mass with unit J/kg is the specific internal energy. The corresponding quantity relative to the amount of substance with unit J/mol is the molar internal energy.[5]
The internal energy of a system depends on its entropy S, its volume V and its number of massive particles: . It expresses the thermodynamics of a system in the energy representation. As a function of state, its arguments are exclusively extensive variables of state. Alongside the internal energy, the other cardinal function of state of a thermodynamic system is its entropy, as a function,, of the same list of extensive variables of state, except that the entropy,, is replaced in the list by the internal energy, . It expresses the entropy representation.[6] [7] [8]
Each cardinal function is a monotonic function of each of its natural or canonical variables. Each provides its characteristic or fundamental equation, for example, that by itself contains all thermodynamic information about the system. The fundamental equations for the two cardinal functions can in principle be interconverted by solving, for example, for, to get .
In contrast, Legendre transformations are necessary to derive fundamental equations for other thermodynamic potentials and Massieu functions. The entropy as a function only of extensive state variables is the one and only cardinal function of state for the generation of Massieu functions. It is not itself customarily designated a 'Massieu function', though rationally it might be thought of as such, corresponding to the term 'thermodynamic potential', which includes the internal energy.[7] [9] [10]
For real and practical systems, explicit expressions of the fundamental equations are almost always unavailable, but the functional relations exist in principle. Formal, in principle, manipulations of them are valuable for the understanding of thermodynamics.
The internal energy
U
\DeltaU=\sumiEi,
\DeltaU
Ei
Umicro,pot
Umicro,kin
U=Umicro,pot+Umicro,kin.
The microscopic kinetic energy of a system arises as the sum of the motions of all the system's particles with respect to the center-of-mass frame, whether it be the motion of atoms, molecules, atomic nuclei, electrons, or other particles. The microscopic potential energy algebraic summative components are those of the chemical and nuclear particle bonds, and the physical force fields within the system, such as due to internal induced electric or magnetic dipole moment, as well as the energy of deformation of solids (stress-strain). Usually, the split into microscopic kinetic and potential energies is outside the scope of macroscopic thermodynamics.
Internal energy does not include the energy due to motion or location of a system as a whole. That is to say, it excludes any kinetic or potential energy the body may have because of its motion or location in external gravitational, electrostatic, or electromagnetic fields. It does, however, include the contribution of such a field to the energy due to the coupling of the internal degrees of freedom of the object with the field. In such a case, the field is included in the thermodynamic description of the object in the form of an additional external parameter.
For practical considerations in thermodynamics or engineering, it is rarely necessary, convenient, nor even possible, to consider all energies belonging to the total intrinsic energy of a sample system, such as the energy given by the equivalence of mass. Typically, descriptions only include components relevant to the system under study. Indeed, in most systems under consideration, especially through thermodynamics, it is impossible to calculate the total internal energy.[11] Therefore, a convenient null reference point may be chosen for the internal energy.
The internal energy is an extensive property: it depends on the size of the system, or on the amount of substance it contains.
At any temperature greater than absolute zero, microscopic potential energy and kinetic energy are constantly converted into one another, but the sum remains constant in an isolated system (cf. table). In the classical picture of thermodynamics, kinetic energy vanishes at zero temperature and the internal energy is purely potential energy. However, quantum mechanics has demonstrated that even at zero temperature particles maintain a residual energy of motion, the zero point energy. A system at absolute zero is merely in its quantum-mechanical ground state, the lowest energy state available. At absolute zero a system of given composition has attained its minimum attainable entropy.
The microscopic kinetic energy portion of the internal energy gives rise to the temperature of the system. Statistical mechanics relates the pseudo-random kinetic energy of individual particles to the mean kinetic energy of the entire ensemble of particles comprising a system. Furthermore, it relates the mean microscopic kinetic energy to the macroscopically observed empirical property that is expressed as temperature of the system. While temperature is an intensive measure, this energy expresses the concept as an extensive property of the system, often referred to as the thermal energy,[12] [13] The scaling property between temperature and thermal energy is the entropy change of the system. Statistical mechanics considers any system to be statistically distributed across an ensemble of
N
Ei
pi
U=
N | |
\sum | |
i=1 |
piEi.
Thermodynamics is chiefly concerned with the changes in internal energy
\DeltaU
For a closed system, with mass transfer excluded, the changes in internal energy are due to heat transfer
Q
W
\DeltaU
When a closed system receives energy as heat, this energy increases the internal energy. It is distributed between microscopic kinetic and microscopic potential energies. In general, thermodynamics does not trace this distribution. In an ideal gas all of the extra energy results in a temperature increase, as it is stored solely as microscopic kinetic energy; such heating is said to be sensible.
A second kind of mechanism of change in the internal energy of a closed system changed is in its doing of work on its surroundings. Such work may be simply mechanical, as when the system expands to drive a piston, or, for example, when the system changes its electric polarization so as to drive a change in the electric field in the surroundings.
If the system is not closed, the third mechanism that can increase the internal energy is transfer of substance into the system. This increase,
\DeltaUmatter
If a system undergoes certain phase transformations while being heated, such as melting and vaporization, it may be observed that the temperature of the system does not change until the entire sample has completed the transformation. The energy introduced into the system while the temperature does not change is called latent energy or latent heat, in contrast to sensible heat, which is associated with temperature change.
Thermodynamics often uses the concept of the ideal gas for teaching purposes, and as an approximation for working systems. The ideal gas consists of particles considered as point objects that interact only by elastic collisions and fill a volume such that their mean free path between collisions is much larger than their diameter. Such systems approximate monatomic gases such as helium and other noble gases. For an ideal gas the kinetic energy consists only of the translational energy of the individual atoms. Monatomic particles do not possess rotational or vibrational degrees of freedom, and are not electronically excited to higher energies except at very high temperatures.
Therefore, the internal energy of an ideal gas depends solely on its temperature (and the number of gas particles):
U=U(N,T)
The internal energy of an ideal gas is proportional to its amount of substance (number of moles)
N
T
U=cVNT,
where
cV
cV
S
V
N
U(S,V,N)=const ⋅
| ||||
e |
| ||||
V |
| ||||
N |
,
where
const
R
U
T=
\partialU | |
\partialS |
,
P=-
\partialU | |
\partialV |
,
PV=NRT
T=
\partialU | |
\partialS |
=
U | |
cVN |
P=-
\partialU | |
\partialV |
=U
R | |
cVV |
P | |
T |
=
| ||||
|
=
NR | |
V |
PV=NRT
The above summation of all components of change in internal energy assumes that a positive energy denotes heat added to the system or the negative of work done by the system on its surroundings.[14]
This relationship may be expressed in infinitesimal terms using the differentials of each term, though only the internal energy is an exact differential.[16] For a closed system, with transfers only as heat and work, the change in the internal energy is
dU=\deltaQ-\deltaW,
P
dV
\deltaW=PdV.
W
Q
\deltaQ=TdS,
T
S
The change in internal energy becomes
dU=TdS-PdV.
The expression relating changes in internal energy to changes in temperature and volume is
This is useful if the equation of state is known.
In case of an ideal gas, we can derive that
dU=CVdT
The expression relating changes in internal energy to changes in temperature and volume is
dU=CVdT+\left[T\left(
\partialP | |
\partialT |
\right)V-P\right]dV.
The equation of state is the ideal gas law
PV=nRT.
Solve for pressure:
P=
nRT | |
V |
.
Substitute in to internal energy expression:
dU=CVdT+\left[T\left(
\partialP | |
\partialT |
\right)V-
nRT | |
V |
\right]dV.
Take the derivative of pressure with respect to temperature:
\left(
\partialP | |
\partialT |
\right)V=
nR | |
V |
.
Replace:
dU=CVdT+\left[
nRT | |
V |
-
nRT | |
V |
\right]dV.
And simplify:
dU=CVdT.
To express
dU
dT
dV
dS=\left(
\partialS | |
\partialT |
\right)VdT+\left(
\partialS | |
\partialV |
\right)TdV
is substituted in the fundamental thermodynamic relation
dU=TdS-PdV.
This gives
dU=T\left(
\partialS | |
\partialT |
\right)VdT+\left[T\left(
\partialS | |
\partialV |
\right)T-P\right]dV.
The term
T\left( | \partialS |
\partialT |
\right)V
CV.
The partial derivative of
S
V
A
dA=-SdT-PdV.
The symmetry of second derivatives of
A
T
V
\left( | \partialS |
\partialV |
\right)T=\left(
\partialP | |
\partialT |
\right)V.
This gives the expression above.
When considering fluids or solids, an expression in terms of the temperature and pressure is usually more useful:
\operatornamedU=\left(CP-\alphaPV\right)\operatornamedT+\left(\betaTP-\alphaT\right)V\operatornamedP,
where it is assumed that the heat capacity at constant pressure is related to the heat capacity at constant volume according to
CP=CV+VT
\alpha2 | |
\betaT |
.
\alpha\equiv
1 | \left( | |
V |
\partialV | |
\partialT |
\right)P
and the isothermal compressibility
\betaT\equiv-
1 | \left( | |
V |
\partialV | |
\partialP |
\right)T
by writing
and equating dV to zero and solving for the ratio dP/dT. This gives
Substituting and in gives the above expression.
The internal pressure is defined as a partial derivative of the internal energy with respect to the volume at constant temperature:
\piT=\left(
\partialU | |
\partialV |
\right)T.
In addition to including the entropy
S
V
U=U(S,V,N1,\ldots,Nn),
where
Nj
j
S
V
Nj
U(\alphaS,\alphaV,\alphaN1,\alphaN2,\ldots) =\alphaU(S,V,N1,N2,\ldots),
\alpha
dU=
\partialU | |
\partialS |
dS+
\partialU | |
\partialV |
dV+
\sum | ||||
|
dNi =TdS-PdV+\sumi\muidNi,
which shows (or defines) temperature
T
U
S
P
V
T=
\partialU | |
\partialS |
,
P=-
\partialU | |
\partialV |
,
and where the coefficients
\mui
i
\mui=\left(
\partialU | |
\partialNi |
\right) | |
S,V,Nj |
.
\lbraceNj\rbrace
T
P
U
dU
U=TS-PV+\sumi\muiNi.
The sum over the composition of the system is the Gibbs free energy:
G=\sumi\muiNi
\lbraceNj\rbrace
\sigmaij
\varepsilonij
dU=TdS+\sigmaijd\varepsilonij.
Euler's theorem yields for the internal energy:[18]
U=TS+ | 1 |
2 |
\sigmaij\varepsilonij.
For a linearly elastic material, the stress is related to the strain by
\sigmaij=Cijkl\varepsilonkl,
Cijkl
Elastic deformations, such as sound, passing through a body, or other forms of macroscopic internal agitation or turbulent motion create states when the system is not in thermodynamic equilibrium. While such energies of motion continue, they contribute to the total energy of the system; thermodynamic internal energy pertains only when such motions have ceased.
James Joule studied the relationship between heat, work, and temperature. He observed that friction in a liquid, such as caused by its agitation with work by a paddle wheel, caused an increase in its temperature, which he described as producing a quantity of heat. Expressed in modern units, he found that c. 4186 joules of energy were needed to raise the temperature of one kilogram of water by one degree Celsius.[19]