GPIB explained

thumb|IEEE 488 cable with stacking connectors

IEEE 488, also known as HP-IB (Hewlett-Packard Interface Bus) and generically as GPIB (General Purpose Interface Bus), is a short-range digital communications 8-bit parallel multi-master interface bus specification developed by Hewlett-Packard. It subsequently became the subject of several standards.

Although the bus was created in the late 1960s to connect together automated test equipment, it also had some success during the 1970s and 1980s as a peripheral bus for early microcomputers, notably the Commodore PET. Newer standards have largely replaced IEEE 488 for computer use, but it is still used by test equipment.

History

In the 1960s, Hewlett-Packard (HP) manufactured various automated test and measurement instruments, such as digital multimeters and logic analyzers. They developed the HP Interface Bus (HP-IB) to enable easier interconnection between instruments and controllers (computers and other instruments).[1] This part of HP was later (c. 1999) spun off as Agilent Technologies, and in 2014 Agilent's test and measurement division was spun off as Keysight Technologies.

The bus was relatively easy to implement using the technology at the time, using a simple parallel bus and several individual control lines. For example, the HP 59501 Power Supply Programmer and HP 59306A Relay Actuator were both relatively simple HP-IB peripherals implemented in TTL, without the need for a microprocessor.

HP licensed the HP-IB patents for a nominal fee to other manufacturers. It became known as the General Purpose Interface Bus (GPIB), and became a de facto standard for automated and industrial instrument control. As GPIB became popular, it was formalized by various standards organizations.

In 1975, the IEEE standardized the bus as Standard Digital Interface for Programmable Instrumentation, IEEE 488; it was revised in 1978 (producing IEEE 488-1978).[2] The standard was revised in 1987, and redesignated as IEEE 488.1 (IEEE 488.1-1987). These standards formalized the mechanical, electrical, and basic protocol parameters of GPIB, but said nothing about the format of commands or data.

In 1987, IEEE introduced Standard Codes, Formats, Protocols, and Common Commands, IEEE 488.2. It was revised in 1992. IEEE 488.2 provided for basic syntax and format conventions, as well as device-independent commands, data structures, error protocols, and the like. IEEE 488.2 built on IEEE 488.1 without superseding it; equipment can conform to IEEE 488.1 without following IEEE 488.2.

While IEEE 488.1 defined the hardware and IEEE 488.2 defined the protocol, there was still no standard for instrument-specific commands. Commands to control the same class of instrument, e.g., multimeters, varied between manufacturers and even models.

The United States Air Force,[3] and later Hewlett-Packard, recognized this as a problem. In 1989, HP developed their Test Measurement Language (TML)[4] or Test and Measurement Systems Language (TMSL)[5] which was the forerunner to Standard Commands for Programmable Instrumentation (SCPI), introduced as an industry standard in 1990.[6] SCPI added standard generic commands, and a series of instrument classes with corresponding class-specific commands. SCPI mandated the IEEE 488.2 syntax, but allowed other (non-IEEE 488.1) physical transports.

The IEC developed their own standards in parallel with the IEEE, with IEC 60625-1 and IEC 60625-2 (IEC 625), later replaced by IEC 60488-2.

National Instruments introduced a backward-compatible extension to IEEE 488.1, originally known as HS-488. It increased the maximum data rate to 8 Mbyte/s, although the rate decreases as more devices are connected to the bus. This was incorporated into the standard in 2003 (IEEE 488.1-2003),[7] over HP's objections.[8] [9]

In 2004, the IEEE and IEC combined their respective standards into a "Dual Logo" IEEE/IEC standard IEC 60488-1, Standard for Higher Performance Protocol for the Standard Digital Interface for Programmable Instrumentation - Part 1: General,[10] replaces IEEE 488.1/IEC 60625-1, and IEC 60488-2,Part 2: Codes, Formats, Protocols and Common Commands,[11] replaces IEEE 488.2/IEC 60625-2.[12]

Characteristics

IEEE 488 is an 8-bit, electrically parallel bus which employs sixteen signal lines — eight used for bi-directional data transfer, three for handshake, and five for bus management — plus eight ground return lines.

The bus supports 31 five-bit primary device addresses numbered from 0 to 30, allocating a unique address to each device on the bus.[13] [14]

The standard allows up to 15 devices to share a single physical bus of up to total cable length. The physical topology can be linear or star (forked).[15] Active extenders allow longer buses, with up to 31 devices theoretically possible on a logical bus.

Control and data transfer functions are logically separated; a controller can address one device as a "talker" and one or more devices as "listeners" without having to participate in the data transfer. It is possible for multiple controllers to share the same bus, but only one can be the "Controller In Charge" at a time.[16]

In the original protocol, transfers use an interlocked, three-wire ready–valid–accepted handshake.[17] The maximum data rate is about one megabyte per second. The later HS-488 extension relaxes the handshake requirements, allowing up to 8 Mbyte/s. The slowest participating device determines the speed of the bus.[18]

Connectors

IEEE 488
Pinout Image:300px
Pinout Caption:Female IEEE 488 connector
Pin1:Data input/output bit
Pin1 Name:DIO1
Pin2:Data input/output bit
Pin2 Name:DIO2
Pin3:Data input/output bit
Pin3 Name:DIO3
Pin4:Data input/output bit
Pin4 Name:DIO4
Pin5:End-or-identify
Pin5 Name:EOI
Pin6:Data valid
Pin6 Name:DAV
Pin7:Not ready for data
Pin7 Name:NRFD
Pin8:Not data accepted
Pin8 Name:NDAC
Pin9:Interface clear
Pin9 Name:IFC
Pin10:Service request
Pin10 Name:SRQ
Pin11:Attention
Pin11 Name:ATN
Pin12 Name:SHIELD
Pin13:Data input/output bit
Pin13 Name:DIO5
Pin14:Data input/output bit
Pin14 Name:DIO6
Pin15:Data input/output bit
Pin15 Name:DIO7
Pin16:Data input/output bit
Pin16 Name:DIO8
Pin17:Remote enable
Pin17 Name:REN
Pin18:(wire twisted with DAV)
Pin18 Name:GND
Pin19:(wire twisted with NRFD)
Pin19 Name:GND
Pin20:(wire twisted with NDAC)
Pin20 Name:GND
Pin21:(wire twisted with IFC)
Pin21 Name:GND
Pin22:(wire twisted with SRQ)
Pin22 Name:GND
Pin23:(wire twisted with ATN)
Pin23 Name:GND
Pin24 Name:Logic ground

IEEE 488 specifies a 24-pin Amphenol-designed micro ribbon connector. Micro ribbon connectors have a D-shaped metal shell, but are larger than D-subminiature connectors. They are sometimes called "Centronics connectors" after the 36-pin micro ribbon connector Centronics used for their printers.

One unusual feature of IEEE 488 connectors is they commonly use a "double-headed" design, with male on one side, and female on the other. This allows stacking connectors for easy daisy-chaining. Mechanical considerations limit the number of stacked connectors to four or fewer, although a workaround involving physically supporting the connectors may be able to get around this.

They are held in place by screws, either 6-32 UNK[19] (now largely obsolete) or metric M3.5×0.6 threads. Early versions of the standard suggested that metric screws should be blackened to avoid confusion with the incompatible UTS threads. However, by the 1987 revision this was no longer considered necessary because of the prevalence of metric threads.

The IEC 60625 standard prescribes the use of 25-pin D-subminiature connectors (the same as used for the parallel port on IBM PC compatibles). This connector did not gain significant market acceptance against the established 24-pin connector.

Capabilities

thumb|IEEE-488 port with listed capabilities on a laboratory temperature controller

Capabilities
FunctionAbbreviationDescription and examples
Source HandshakeSH1Complete
Acceptor HandshakeAH1Complete
Basic TalkerT 5Responds to serial poll; untalks when listen address received; talk only capability
6Untalks when listen address received; no talk only
7No serial poll; untalks when listen address received; talk only capability
Extended TalkerTE0No extended talker
Basic ListenerL3Listen only mode; unlistens if talk address received
4Unlistens if talk address received
Extended ListenerLE0No extended listener
Service RequestSR0No service request capability
1Complete
Remote-LocalRL0No local lockout
1Complete
Parallel PollPP0Does not respond to Parallel Poll
Device ClearDC1complete
Device TriggerDT0No device trigger capability
1Complete
ControllerC0No controller function
E1Open collector drive electronics
2Three state drivers

Use as a computer interface

HP's designers did not specifically plan for IEEE 488 to be a peripheral interface for general-purpose computers; the focus was on instrumentation. But when HP's early microcomputers needed an interface for peripherals (disk drives, tape drives, printers, plotters, etc.), HP-IB was readily available and easily adapted to the purpose.

HP computer products which used HP-IB included the HP Series 80, HP 9800 series,[20] the HP 2100 series,[21] and the HP 3000 series.[22] HP computer peripherals which did not utilize the RS-232 communication interface often used HP-IB including disc systems like the HP 7935. Some of HP's advanced pocket calculators of the 1980s, such as the HP-41 and HP-71B series, also had IEEE 488 capabilities, via an optional HP-IL/HP-IB interface module.

Other manufacturers adopted GPIB for their computers as well, such as with the Tektronix 405x line.

The Commodore PET (introduced 1977) range of personal computers connected their peripherals using the IEEE 488 bus, but with a non-standard card edge connector. Commodore's following 8-bit machines utilized a serial bus whose protocol was based on IEEE 488.[23] Commodore marketed an IEEE 488 cartridge for the VIC-20[24] and the Commodore 64.[25] Several third party suppliers of Commodore 64 peripherals made a cartridge for the C64 that provided an IEEE 488-derived interface on a card edge connector similar to that of the PET series.[26]

Eventually, faster, more complete standards such as SCSI superseded IEEE 488 for peripheral access.

Comparison with other interface standards

Electrically, IEEE 488 used a hardware interface that could be implemented with some discrete logic or with a microcontroller. The hardware interface enabled devices made by different manufacturers to communicate with a single host. Since each device generated the asynchronous handshaking signals required by the bus protocol, slow and fast devices could be mixed on one bus. The data transfer is relatively slow, so transmission line issues such as impedance matching and line termination are ignored. There was no requirement for galvanic isolation between the bus and devices, which created the possibility of ground loops causing extra noise and loss of data.

Physically, the IEEE 488 connectors and cabling were rugged and held in place by screws. While physically large and sturdy connectors were an advantage in industrial or laboratory set ups, the size and cost of the connectors was a liability in applications such as personal computers.

Although the electrical and physical interfaces were well defined, there was not an initial standard command set. Devices from different manufacturers might use different commands for the same function.[27] Some aspects of the command protocol standards were not standardized until Standard Commands for Programmable Instruments (SCPI) in 1990. Implementation options (e.g. end of transmission handling) can complicate interoperability in pre-IEEE 488.2 devices.

More recent standards such as USB, FireWire, and Ethernet take advantage of declining costs of interface electronics to implement more complex standards providing higher bandwidth. The multi-conductor (parallel data) connectors and shielded cable were inherently more costly than the connectors and cabling that could be used with serial data transfer standards such as RS-232, RS-485, USB, FireWire or Ethernet. Very few mass-market personal computers or peripherals (such as printers or scanners) implemented IEEE 488.

External links

Part 1 Specifications
Part 2 Specifications
Other

Notes and References

  1. Gerald E. . Nelson . David W. . Ricci . A Practical Interface System for Electronic Instruments . Hewlett-Packard Journal . 24 . 2 . 2–7 . October 1972 . Controllers: 3260A Marked Card Reader; 9820A Calculator (with 11144A Interface Kit) .
    Donald C. . Loughry . A Common Digital Interface for Programmable Instruments: The Evolution of a System . Hewlett-Packard Journal . 24 . 2 . 8–11 . October 1972 .

  2. , p. iii
  3. Project Mate in 1985
  4. Web site: GPIB 101, A Tutorial of the GPIB Bus . ICS Electronics . 5, paragraph = SCPI Commands .
  5. Web site: Hewlett Packard Test & Measurement Catalog 1991 . hparchive.com . 8, paragraph = SCPI .
  6. Web site: History of GPIB . National Instruments . In 1990, the IEEE 488.2 specification included the Standard Commands for Programmable Instrumentation (SCPI) document. . 2010-02-06 .
  7. Web site: Upgraded Standard Boosts Speed of IEEE 488 Instrument Buses Eightfold . 2003-10-06 . IEEE . https://web.archive.org/web/20031207052849/http://standards.ieee.org/announcements/pr_4881upgrade.html . dead . December 7, 2003 . 2010-02-06 .
  8. HP and Other Test and Measurement Companies Urge IEEE to Oppose Revisions of Established IEEE 488 Standard . Hewlett-Packard Company . December 1997 . 2010-02-16 . dead . https://web.archive.org/web/20110610164221/http://grouper.ieee.org/groups/imstc8/488/1/hppress12-97.html . 2011-06-10.
  9. Web site: P488.1 Project Home . IEEE . 2010-02-16 . dead . https://web.archive.org/web/20100428090906/http://grouper.ieee.org/groups/imstc8/488/1/ . 2010-04-28.
  10. Book: IEC/IEEE Standard for Higher Performance Protocol for the Standard Digital Interface for Programmable Instrumentation - Part 1: General (Adoption of IEEE Std 488.1-2003) . IEEE . 10.1109/IEEESTD.2004.95749 . 978-0-7381-4536-5 .
  11. Book: Standard Digital Interface for Programmable Instrumentation- Part 2: Codes, Formats, Protocols and Common Commands (Adoption of (IEEE Std 488.2-1992) . IEEE . 10.1109/IEEESTD.2004.95390 . 11059/14380 . 978-0-7381-4100-8 .
  12. Web site: Replaced or Withdrawn Publications . IEC . 2010-02-06 . dead . https://archive.today/20120417191411/http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?header=IEC&search=replaced&wwwprog=sea22.p . 2012-04-17 .
  13. Book: NI-488.2 User Manual . February 2005 . National Instruments Corporation . NI P/N 370428C-01 . A-2 . GPIB Addressing . The primary address is a number in the range 0 to 30. . http://www.ni.com/pdf/manuals/370428c.pdf . 2010-02-16 .
  14. Book: http://literature.cdn.keysight.com/litweb/pdf/82350-90004.pdf. Agilent 82350B PCI GPIB Interface: Installation and Configuration Guide. 2009-07-20. Agilent Technologies. 26. Table 1-1: 82350 GPIB interface card configuration parameters. Agilent P/N 82350-90004. any address in the range 0 - 30, inclusive, may be used. 2010-02-16.
  15. Web site: GPIB Instrument Control Tutorial . National Instruments . 2009-08-24 . connected in either a daisy-chain or star topology . 2010-02-16 .
  16. Book: NI-488.2 User Manual . February 2005 . National Instruments Corporation . NI P/N 370428C-01 . A-1 . 2010-02-16 . https://web.archive.org/web/20081202204121/http://www.ni.com/pdf/manuals/370428c.pdf . 2008-12-02 . dead .
  17. Book: NI-488.2 User Manual . February 2005 . National Instruments Corporation . NI P/N 370428C-01 . A-3 . Handshake Lines . http://www.ni.com/pdf/manuals/370428c.pdf . 2010-02-16 .
  18. Web site: Using HS488 to Improve GPIB System Performance . National Instruments Corporation . 30 March 2009 . 2010-02-16 .
  19. Book: http://bitsavers.org/pdf/hp/hpib/TutorialDescrOfHPIB.pdf . Tutorial Description of the Hewlett-Packard Interface Bus . Hewlett-Packard. 28. Mechanical Aspects. Some existing cables use English threads (6-32UNK).. 2022-06-13.
  20. Web site: HP 98135A HP-IB Interface 9815 . HP Computer Museum . 2010-02-06 .
  21. Web site: 59310A HP-IB Interface . HP-IB interface for HP1000 and HP2000 computers . HP Computer Museum . 2010-02-06 .
  22. Web site: 27113A HP-IB Interface . CIO HP-IB interface for 3000 Series 900 . HP Computer Museum . 2010-02-06 .
  23. Book: Bagnall, Brian . 2006 . On the Edge: The Spectacular Rise and Fall of Commodore . Variant Press . 221 . 0-9738649-0-7 . 761384138 .
  24. Commodore drawing for VIC-1112 - Drawing no. 1110010 Rev:A
  25. http://www.zimmers.net/anonftp/pub/cbm/schematics/cartridges/c64/ieee-488/index.html Reverse-engineered schematics for Commodore C64 IEEE interface
  26. http://www.zimmers.net/anonftp/pub/cbm/schematics/cartridges/c64/ieee-488/index.html Link to schematic for one such converter.
  27. Early devices might respond to an ID command with an identification string; later standards had devices respond to the *ID command.