A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior – a system that can both flow (described by a differential equation) and jump (described by a state machine, automaton, or a difference equation). Often, the term "hybrid dynamical system" is used instead of "hybrid system", to distinguish from other usages of "hybrid system", such as the combination neural nets and fuzzy logic, or of electrical and mechanical drivelines. A hybrid system has the benefit of encompassing a larger class of systems within its structure, allowing for more flexibility in modeling dynamic phenomena.
In general, the state of a hybrid system is defined by the values of the continuous variables and a discrete mode. The state changes either continuously, according to a flow condition, or discretely according to a control graph. Continuous flow is permitted as long as so-called invariants hold, while discrete transitions can occur as soon as given jump conditions are satisfied. Discrete transitions may be associated with events.
Hybrid systems have been used to model several cyber-physical systems, including physical systems with impact, logic-dynamic controllers, and even Internet congestion.
A canonical example of a hybrid system is the bouncing ball, a physical system with impact. Here, the ball (thought of as a point-mass) is dropped from an initial height and bounces off the ground, dissipating its energy with each bounce. The ball exhibits continuous dynamics between each bounce; however, as the ball impacts the ground, its velocity undergoes a discrete change modeled after an inelastic collision. A mathematical description of the bouncing ball follows. Let
x1
x2
When
x\inC=\{x1>0\}
x |
1=
x | |||
|
2=-g
g
When
x\inD=\{x1=0\}
+ | |
x | |
1 |
=x1, x
+ | |
2 |
=-\gammax2
0<\gamma<1
\gamma
The bouncing ball is an especially interesting hybrid system, as it exhibits Zeno behavior. Zeno behavior has a strict mathematical definition, but can be described informally as the system making an infinite number of jumps in a finite amount of time. In this example, each time the ball bounces it loses energy, making the subsequent jumps (impacts with the ground) closer and closer together in time.
It is noteworthy that the dynamical model is complete if and only if one adds the contact force between the ground and the ball. Indeed, without forces, one cannot properly define the bouncing ball and the model is, from a mechanical point of view, meaningless. The simplest contact model that represents the interactions between the ball and the ground, is the complementarity relation between the force and the distance (the gap) between the ball and the ground. This is written as
0\leqλ\perpx1\geq0.
λ
There are approaches to automatically proving properties of hybrid systems (e.g., some of the tools mentioned below). Common techniques for proving safety of hybrid systems are computation of reachable sets, abstraction refinement, and barrier certificates.
Most verification tasks are undecidable,[1] making general verification algorithms impossible. Instead, the tools are analyzed for their capabilities on benchmark problems. A possible theoretical characterization of this is algorithms that succeed with hybrid systems verification in all robust cases[2] implying that many problems for hybrid systems, while undecidable, are at least quasi-decidable.[3]
Two basic hybrid system modeling approaches can be classified, an implicit and an explicit one. The explicit approach is often represented by a hybrid automaton, a hybrid program or a hybrid Petri net. The implicit approach is often represented by guarded equations to result in systems of differential algebraic equations (DAEs) where the active equations may change, for example by means of a hybrid bond graph.
As a unified simulation approach for hybrid system analysis, there is a method based on DEVS formalism in which integrators for differential equations are quantized into atomic DEVS models. These methods generate traces of system behaviors in discrete event system manner which are different from discrete time systems. Detailed of this approach can be found in references [Kofman2004] [CF2006] [Nutaro2010] and the software tool PowerDEVS.