Homoisoflavonoid Explained

Homoisoflavonoids (3-benzylidenechroman-4-ones) are a type of phenolic compounds occurring naturally[1] in plants.

Chemically, they have the general structure of a 16-carbon skeleton, which consists of two phenyl rings (A and B) and heterocyclic ring (C).

Synthesis

Homoisoflavones can be synthesized from 2'-hydroxydihydrochalcones.[2]

Homoisoflavanones can be synthesized[3] from 3,5-methoxy phenols via chroman-4-one in three steps[4] or from phloroglucinol.[5]

ConversionHomoisoflavanes can be obtained from the conversion of homoisoflavonoids.[6]

Natural occurrences

The homoisoflavonoids portulacanones A, B, C and D can be found in Portulaca oleracea (common purslane, Caryophyllales, Portulacaceae).[7]

The 3,4-dihydroxyhomoisoflavans sappanol, episappanol, 3'-deoxysappanol, 3'-O-methylsappanol and 3'-O-methylepisappanol can be found in Caesalpinia sappan.[8]

The homoisoflavones scillavones A and B can be isolated from the bulbs of Scilla scilloides (Barnardia japonica).[9]

Homoisoflavanones

Homoisoflavanones (3-Benzyl-4-chromanones[10]) can be found in various plants,[11] notably in Hyacinthaceae (Scilloideae).[12]

Sappanone A can be found in Caesalpinia sappan.[13]

C-Methylated homoisoflavanones (3-(4'-methoxy-benzyl)-5,7-dihydroxy-6-methyl-8-methoxy-chroman-4-one, 3-(4'-methoxy-benzyl)-5,7-dihydroxy-6,8-dimethyl-chroman-4-one, 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6,8-dimethyl-chroman-4-one, 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-8-methoxy-chroman-4-one and 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-chroman-4-one) can be found in the rhizomes of Polygonum odoratum.[14]

5,7-Dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-chroman-4-one, a homoisoflavanone extracted from Cremastra appendiculata (Orchidaceae), has anti-angiogenic activities and inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-?B nuclear localization.[15]

In Asparagaceae

3-(4'-Methoxybenzyl)-7,8-methylenedioxy-chroman-4-one, a homoisoflavanone with antimycobacterial activity, can be isolated from Chlorophytum inornatum (Asparagaceae, Agavoideae).

5,7-Dihydroxy-3-(4-methoxybenzyl)-chroman-4-one, 7-hydroxy-3-(4-hydroxybenzyl)-chroman-4-one and 4'-demethyl-3,9-dihydro-punctatin can be isolated from Agave tequilana (Asparagaceae, Agavoideae).[16]

in Scilloideae (Hyacinthaceae)7-O-α-Rhamnopyranosyl-(1→6)-β-glucopiranosyl-5-hydroxy-3-(4-methoxybenzyl)-chroman-4-one, 7-O-α-rhamnopyranosyl-(1→6)-β-glucopiranosyl-5-hydroxy-3-(4′-hydroxybenzyl)-chroman-4-one, 5,7-dihydroxy-3-(4′-methoxybenzyl)-chroman-4-one (3,9-dihidroeucomin), 5,7-dihydroxy-6-methoxy-3-(4′-methoxybenzyl)-chroman-4-one, 5,7-dihydroxy 3-(4′-hydroxybenzyl)-chroman-4-one (4,4'-demethyl-3,9-dihydropuctatin), 5,7-dihydroxy-3-(4′-hydroxybenzyl)-6-methoxy-chroman-4-one (3,9-dihydroeucomnalin) and 7-hydroxy-3-(4′-hydroxybenzyl)-5-methoxy-chroman-4-one can be isolated from the bulbs of Ledebouria floribunda (tribe Hyacintheae).[17] Other compounds can be found in Ledebouria revoluta, a plant widely used as an ethnomedicinal in southern Africa.

The homoisoflavanone glycosides (-)-7-O-methyleucomol 5-O-beta-D-glucopyranoside, (-)-7-O-methyleucomol 5-O-beta-rutinoside and (-)-7-O-methyleucomol 5-O-beta-neohesperidoside can be isolated from the bulbs of Ornithogalum caudatum (tribe Ornithogaloideae).[18]

Scillascillin-type homoisoflavanones (3-hydroxy-type homoisoflavonoids) can be isolated from Drimiopsis maculata (tribe Hyacintheae, Massoniinae).[19]

Eucomin, eucomol,[20] (E)-7-O-methyl-eucomin, (—)-7-O-methyleucomol, (+)-3,9-dihydro-eucomin and 7-O-methyl-3,9-dihydro-eucomin[21] can be isolated from the bulbs of Eucomis bicolor (tribe Hyacintheae, Massoniinae). 4'-o-Methyl-punctatin, autumnalin and 3,9-dihydro-autumnalin can be found in Eucomis autumnalis.[22]

Five homoisoflavanones, 3,5-dihydroxy-7,8-dimethoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7-methoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7,8-dimethoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone, 3,5,6-trihydroxy-7-methoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone and 3,5,7-trihydroxy-3-(3'-hydroxy-4'methoxybenzyl)-4-chromanone, can be isolated from the dichloromethane extract of the bulbs of Pseudoprospero firmifolium (tribe Hyacintheae, subtribe Pseudoprospero).[23]

A homoisoflavanone can also be found in Albuca fastigiata (tribe Ornithogaleae).[24]

The same molecule, 5,6-dimethoxy-7-hydroxy-3-(4′-hydroxybenzyl)-4-chromanone, can be found in the bulbs of Resnova humifusa and Eucomis montana (tribe Hyacintheae, subtribe Massoniinae).[25]

Uses

The homoisoflavonoids portulacanones A, B, C and D show in vitro cytotoxic activities towards four human cancer cell lines.

See also

Notes and References

  1. Book: Study on the interaction of homoisoflavonoids with nucleic acids Comparative study by spectroscopic methods. Roshanak Namdar and Shohreh Nafisi. December 2013. Lap Lambert Academic Publishing GmbH KG. 978-3-659-49924-1.
  2. New efficient synthesis and bioactivity of homoisoflavonoids. 10.3998/ark.5550190.0009.b28. Arkivoc. 2008. 11. 285–294. 2008. free. 2027/spo.5550190.0009.b28. free . Rao . Vallabhaneni Madhava . Damu . Guri Lakshmi Vasantha . Sudhakar . Dega . Siddaiah . Vidavaluri . Rao . Chunduri Venkata .
  3. 10.1016/S0040-4020(01)91433-4. A new synthesis of homoisoflavanones (3-benzyl-4-chromanones). Tetrahedron. 41. 24. 5933–5937. 1985. Jain. Amolak C.. Anita Mehta (née Sharma). (Mrs).
  4. 10.1007/s11224-010-9703-x. Synthesis and NMR elucidation of homoisoflavanone analogues. Structural Chemistry. 22. 161–166. 2010. Shaikh. Mahidansha. Petzold. Katja. Kruger. Hendrik G.. Du Toit. Karen.
  5. 10.1016/S0040-4039(00)94146-7. Synthesis of scillascillin, a naturally occurring benzocyclobutene. Tetrahedron Letters. 24. 50. 5581–5584. 1983. Rawal. Viresh H.. Cava. Michael P..
  6. 19003606. 2008. Zhang. L. Synthesis of (+/-) homoisoflavanone and corresponding homoisoflavane. Journal of Asian Natural Products Research. 10. 9–10. 909–913. Zhang. W. G.. Kang. J. Bao. K. Dai. Y. Yao. X. S.. 10.1080/10286020802217499.
  7. 10.1016/j.phytochem.2012.05.014. 22683318. Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry. 80. 37–41. 2012. Yan. Jian. Sun. Li-Rong. Zhou. Zhong-Yu. Chen. Yu-Chan. Zhang. Wei-Min. Dai. Hao-Fu. Tan. Jian-Wen.
  8. Homoisoflavonoids and related compounds. II. Isolation and absolute configurations of 3,4-dihydroxylated homoisoflavans and brazilins from Caesalpinia sappan L. 10.1248/cpb.35.2761. Chemical & Pharmaceutical Bulletin. 35. 7. 2761–2773. 1987. Namikoshi. Michio. Nakata. Hiroyuki. Yamada. Hiroyuki. Nagai. Minako. Saitoh. Tamotsu. free.
  9. 18591825. 2008. Nishida. Y. A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides. Chemical & Pharmaceutical Bulletin. 56. 7. 1022–5. Eto. M. Miyashita. H. Ikeda. T. Yamaguchi. K. Yoshimitsu. H. Nohara. T. Ono. M. 10.1248/cpb.56.1022. free.
  10. 10.1016/j.sajb.2006.01.004. 3-Benzyl-4-chromanones (homoisoflavanones) from bulbs of the ethnomedicinal geophyte Ledebouria revoluta (Hyacinthaceae). South African Journal of Botany. 72. 4. 517–520. 2006. Moodley. N.. Crouch. N.R.. Mulholland. D.A. Slade. D.. Ferreira. D.. free.
  11. 10.1080/14786410903335174. 20306368. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Natural Product Research. 24. 5. 457–490. 2010. Du Toit. Karen. Drewes. Siegfried E.. Bodenstein. Johannes.
  12. 10.1016/j.sajb.2007.01.002. Antibacterial activity and QSAR of homoisoflavanones isolated from six Hyacinthaceae species. South African Journal of Botany. 73. 2. 236–241. 2007. Du Toit. K.. Elgorashi. E.E.. Malan. S.F.. Mulholland. D.A.. Drewes. S.E.. Van Staden. J.. free.
  13. 3431864. 2012. Chang. T. S.. Melanogenesis Inhibition by Homoisoflavavone Sappanone a from Caesalpinia sappan. International Journal of Molecular Sciences. 13. 8. 10359–10367. Chao. S. Y.. Ding. H. Y.. 10.3390/ijms130810359. 22949866 . free .
  14. 19384735. 2009. Wang. D. A new C-methylated homoisoflavanone and triterpenoid from the rhizomes of Polygonatum odoratum. Natural Product Research. 23. 6. 580–9. Li. D. Zhu. W. Peng. P. 10.1080/14786410802560633.
  15. 10.1016/j.jdermsci.2010.07.001. 20724116. Homoisoflavanone inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-κB nuclear localization. Journal of Dermatological Science. 59. 3. 163–169. 2010. Hur. Seulgi. Lee. Yun Sang. Yoo. Hyun. Yang. Jeong-Hee. Kim. Tae-Yoon.
  16. 10.3390/molecules15053295. 20657479. Homoisoflavanones from Agave tequilana Weber. Molecules. 15. 5. 3295–3301. 2010. Morales-Serna. José Antonio. Jiménez. Armando. Estrada-Reyes. Rosa. Marquez. Carmen. Cárdenas. Jorge. Salmón. Manuel. 6263332 . free .
  17. 10.1016/j.fitote.2008.10.006. 19027834. Homoisoflavanones from Ledebouria floribunda. Fitoterapia. 80. 2. 96–101. 2009. Calvo. María Isabel.
  18. 11858761. 2002. Tang. Y. Three new homoisoflavanone glycosides from the bulbs of Ornithogalum caudatum. Journal of Natural Products. 65. 2. 218–20. Yu. B. Hu. J. Wu. T. Hui. H. 10.1021/np010466a.
  19. 11274776. 2001. Koorbanally. C. Scillascillin-type homoisoflavanones from Drimiopsis maculata (Hyacinthaceae). Biochemical Systematics and Ecology. 29. 5. 539–541. Crouch. N. R.. Mulholland. D. A.. 10.1016/s0305-1978(00)00073-9.
  20. Book: 10.1007/978-3-7091-8611-4_3. Homoisoflavanones and Biogenetically Related Compounds. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. 40. 105–152. 1981. Heller. W.. Tamm. Ch.. 978-3-7091-8613-8.
  21. 10.1002/hlca.19760590618. 1017955. Homoisoflavanone. IV. Neue Inhaltsstoffe der Eucomin-Reihe von Eucomis bicolor. Helvetica Chimica Acta. 59. 6. 2048–2058. 1976. Heller. Werner. Andermatt. Paul. Schaad. Werner A.. Tamm. Christoph.
  22. 10.1016/0040-4039(70)89003-7. The homo-isoflavones II1). Isolation and structure of 4′-o-methyl-punctatin, autumnalin and 3,9-dihydro-autumnalin. Tetrahedron Letters. 11. 7. 475–478. 1970. Sidwell. W.T.L.. Tamm. Ch..
  23. 17884116. 2007. Koorbanally. C. Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae (Hyacinthaceae: Hyacinthoideae). Phytochemistry. 68. 22–24. 2753–6. Sewjee. S. Mulholland. D. A.. Crouch. N. R.. Dold. A. 10.1016/j.phytochem.2007.08.005.
  24. 10.1016/j.bse.2004.08.009. A novel 3-hydroxy-3-benzyl-4-chromanone-type homoisoflavonoid from Albuca fastigiata (Ornithogaloideae: Hyacinthaceae). Biochemical Systematics and Ecology. 33. 5. 545–549. 2005. Koorbanally. Chantal. Mulholland. Dulcie A.. Crouch. Neil R..
  25. 10.1016/j.bse.2005.08.003. Coincident isolation of a novel homoisoflavonoid from Resnova humifusa and Eucomis montana (Hyacinthoideae: Hyacinthaceae). Biochemical Systematics and Ecology. 34. 2. 114–118. 2006. Koorbanally. Neil A.. Crouch. Neil R.. Harilal. Avinash. Pillay. Bavani. Mulholland. Dulcie A..