Hilbert's paradox of the Grand Hotel (colloquial: Infinite Hotel Paradox or Hilbert's Hotel) is a thought experiment which illustrates a counterintuitive property of infinite sets. It is demonstrated that a fully occupied hotel with infinitely many rooms may still accommodate additional guests, even infinitely many of them, and this process may be repeated infinitely often. The idea was introduced by David Hilbert in a 1925 lecture "Über das Unendliche", reprinted in, and was popularized through George Gamow's 1947 book One Two Three... Infinity.[1] [2]
Hilbert imagines a hypothetical hotel with rooms numbered 1, 2, 3, and so on with no upper limit. This is called a countably infinite number of rooms. Initially every room is occupied, and yet new visitors arrive, each expecting their own room. A normal, finite hotel could not accommodate new guests once every room is full. However, it can be shown that the existing guests and newcomers — even an infinite number of them — can each have their own room in the infinite hotel.
With one additional guest, the hotel can accommodate him or her and the existing guests if infinitely many guests simultaneously move rooms. The guest currently in room 1 moves to room 2, the guest currently in room 2 to room 3, and so on, moving every guest from their current room n to room n+1. The infinite hotel has no final room, so every guest has a room to go to. After this, room 1 is empty and the new guest can be moved into that room. By repeating this procedure, it is possible to make room for any finite number of new guests. In general, when k guests seek a room, the hotel can apply the same procedure and move every guest from room n to room n + k.
It is also possible to accommodate a countably infinite number of new guests: just move the person occupying room 1 to room 2, the guest occupying room 2 to room 4, and, in general, the guest occupying room n to room 2n (2 times n), and all the odd-numbered rooms (which are countably infinite) will be free for the new guests.
It is possible to accommodate countably infinitely many coachloads of countably infinite passengers each, by several different methods. Most methods depend on the seats in the coaches being already numbered (or use the axiom of countable choice). In general any pairing function can be used to solve this problem. For each of these methods, consider a passenger's seat number on a coach to be
n
c
n
c
Send the guest in room
i
2i
3n
5n
c
n | |
p | |
c |
pc
c
n
c
Each person of a certain seat
s
c
2s3c
2534
This method can also easily be expanded for infinite nights, infinite entrances, etc. (
2s3c5n7e...
For each passenger, compare the lengths of
n
c
Unlike the prime powers solution, this one fills the hotel completely, and we can reconstruct a guest's original coach and seat by reversing the interleaving process. First add a leading zero if the room has an odd number of digits. Then de-interleave the number into two numbers: the coach number consists of the odd-numbered digits and the seat number is the even-numbered ones. Of course, the original encoding is arbitrary, and the roles of the two numbers can be reversed (seat-odd and coach-even), so long as it is applied consistently.
Those already in the hotel will be moved to room
(n2+n)/2
n
((c+n-1)2+c+n-1)/2+n
(c+n-1)
n
This pairing function can be demonstrated visually by structuring the hotel as a one-room-deep, infinitely tall pyramid. The pyramid's topmost row is a single room: room 1; its second row is rooms 2 and 3; and so on. The column formed by the set of rightmost rooms will correspond to the triangular numbers. Once they are filled (by the hotel's redistributed occupants), the remaining empty rooms form the shape of a pyramid exactly identical to the original shape. Thus, the process can be repeated for each infinite set. Doing this one at a time for each coach would require an infinite number of steps, but by using the prior formulas, a guest can determine what their room "will be" once their coach has been reached in the process, and can simply go there immediately.
Let
S:=\{(a,b)\mida,b\inN\}
S
N
s1,s2,...
sn=(a,b)
b
a
n
0
Suppose the hotel is next to an ocean, and an infinite number of car ferries arrive, each bearing an infinite number of coaches, each with an infinite number of passengers. This is a situation involving three "levels" of infinity, and it can be solved by extensions of any of the previous solutions.
The prime factorization method can be applied by adding a new prime number for every additional layer of infinity (
2s3c5f
f
The prime power solution can be applied with further exponentiation of prime numbers, resulting in very large room numbers even given small inputs. For example, the passenger in the second seat of the third bus on the second ferry (address 2-3-2) would raise the 2nd odd prime (5) to 49, which is the result of the 3rd odd prime (7) being raised to the power of his seat number (2). This room number would have over thirty decimal digits.
The interleaving method can be used with three interleaved "strands" instead of two. The passenger with the address 2-3-2 would go to room 232, while the one with the address 4935-198-82217 would go to room #008,402,912,391,587 (the leading zeroes can be removed).
Anticipating the possibility of any number of layers of infinite guests, the hotel may wish to assign rooms such that no guest will need to move, no matter how many guests arrive afterward. One solution is to convert each arrival's address into a binary number in which ones are used as separators at the start of each layer, while a number within a given layer (such as a guest's coach number) is represented with that many zeroes. Thus, a guest with the prior address 2-5-1-3-1 (five infinite layers) would go to room 10010000010100010 (decimal 295458).
As an added step in this process, one zero can be removed from each section of the number; in this example, the guest's new room is 101000011001 (decimal 2585). This ensures that every room could be filled by a hypothetical guest. If no infinite sets of guests arrive, then only rooms that are a power of two will be occupied.
Hilbert's paradox is a veridical paradox: it leads to a counter-intuitive result that is provably true. The statements "there is a guest to every room" and "no more guests can be accommodated" are not equivalent when there are infinitely many rooms.
Initially, this state of affairs might seem to be counter-intuitive. The properties of infinite collections of things are quite different from those of finite collections of things. The paradox of Hilbert's Grand Hotel can be understood by using Cantor's theory of transfinite numbers. Thus, in an ordinary (finite) hotel with more than one room, the number of odd-numbered rooms is obviously smaller than the total number of rooms. However, in Hilbert's Grand Hotel, the quantity of odd-numbered rooms is not smaller than the total "number" of rooms. In mathematical terms, the cardinality of the subset containing the odd-numbered rooms is the same as the cardinality of the set of all rooms. Indeed, infinite sets are characterized as sets that have proper subsets of the same cardinality. For countable sets (sets with the same cardinality as the natural numbers) this cardinality is \aleph0
Rephrased, for any countably infinite set, there exists a bijective function which maps the countably infinite set to the set of natural numbers, even if the countably infinite set contains the natural numbers. For example, the set of rational numbers—those numbers which can be written as a quotient of integers—contains the natural numbers as a subset, but is no bigger than the set of natural numbers since the rationals are countable: there is a bijection from the naturals to the rationals.