Hermit crab explained

Hermit crabs are anomuran decapod crustaceans of the superfamily Paguroidea that have adapted to occupy empty scavenged mollusc shells to protect their fragile exoskeletons.[1] [2] There are over 800 species of hermit crab, most of which possess an asymmetric abdomen concealed by a snug-fitting shell. Hermit crabs' soft (non-calcified) abdominal exoskeleton means they must occupy shelter produced by other organisms or risk being defenseless.

The strong association between hermit crabs and their shelters has significantly influenced their biology. Almost 800 species carry mobile shelters (most often calcified snail shells); this protective mobility contributes to the diversity and multitude of these crustaceans which are found in almost all marine environments. In most species, development involves metamorphosis from symmetric, free-swimming larvae to morphologically asymmetric, benthic-dwelling, shell-seeking crabs. Such physiological and behavioral extremes facilitate a transition to a sheltered lifestyle, revealing the extensive evolutionary lengths that led to their superfamily success.

Classification

The hermit crabs of Paguroidea are more closely related to squat lobsters and porcelain crabs than they are to true crabs (Brachyura). Together with the squat lobsters and porcelain crabs, they all belong to the infraorder Anomura, the sister taxon to Brachyura.

However, the relationship of king crabs to the rest of Paguroidea has been a highly contentious topic. Many studies based on their physical characteristics, genetic information, and combined data demonstrate the longstanding hypothesis that the king crabs in the family Lithodidae are derived hermit crabs descended from pagurids and should be classified as a family within Paguroidea.[3] [4] [5] [6] The molecular data has disproven an alternate view based on morphological arguments that the Lithodidae (king crabs) nest with the Hapalogastridae in a separate superfamily, Lithodoidea.[7] [8] As such, in 2023, the family Lithodidae was placed back into Paguroidea after having been moved out of it in 2007.[9]

Nine families are formally recognized in the superfamily Paguroidea,[1] containing around 1200 species in total in 135 genera.[10]

Phylogeny

The placement of Paguroidea within Anomura can be shown in the cladogram below, which also shows the king crabs of Lithodidae as sister taxon to the hermit crabs of Paguridae:[13]

Fossil record

The fossil record of in situ hermit crabs using gastropod shells stretches back to the Late Cretaceous. Before that time, at least some hermit crabs used ammonite shells instead, as shown by a specimen of Palaeopagurus vandenengeli from the Speeton Clay Formation, Yorkshire, UK, from the Lower Cretaceous,[14] as well as a specimen of a diogenid hermit crab from the Upper Jurassic of Russia.[15] The earliest record of the superfamily extends back to the earliest part of the Jurassic, with the oldest known species being Schobertella hoelderi from the late Hettangian of Germany.[16]

Aquatic and terrestrial hermit crabs

Hermit crabs can be informally divided into two groups: aquatic hermit crabs and terrestrial hermit crabs. [17]

The first group, the land hermit crabs, spend most of their life on land as terrestrial species in tropical areas, though even they require access to both freshwater and saltwater to keep their gills damp or wet to survive and to reproduce. They belong to the family Coenobitidae. Two of the most common crabs are the Ecuadorian Hermit crab and the Purple Pincher.[18]

The Ecuadorian Hermit Crab (Coenobita compressus) is a grayish black crab that are commonly found in tropical areas as well as beaches and rainforests. They are nocturnal, and are very social.[19] They eat washed up plants, and are recommended they eat mostly plants. They must have seawater close to them, as they need to keep their gills moistened. Overall they are a very social and peaceful crab.

The Purple Pincher (Coenobita clypeatus) is a purple and orange crab that is typically found near the shore and especially in the tropical islands.[20] While they are also nocturnal these crabs have aggressive behaviors as well as cannibal tendencies. They forage in a big groups, and are able to eat anything from fish to wood. Though they are terrestrial they travel back to the ocean to release their larvae, however they cannot submerge themselves in the water as their gills prevent them.

Description

Most species have long, spirally curved abdomens, which are soft, unlike the hard, calcified abdomens seen in related crustaceans. The vulnerable abdomen is protected from predators by a salvaged empty seashell carried by the hermit crab, into which its whole body can retract.[21] Most frequently, hermit crabs use the shells of sea snails (although the shells of bivalves and scaphopods and even hollow pieces of wood and stone are used by some species).[22] The tip of the hermit crab's abdomen is adapted to clasp strongly onto the columella of the snail shell.[23] Most hermit crabs are nocturnal.

Development and reproduction

Hermit crab species range in size and shape, from species with a carapace only a few millimetres long to Coenobita brevimanus, which can live 12–70 years and can approach the size of a coconut. The shell-less hermit crab Birgus latro (coconut crab) is the world's largest terrestrial invertebrate.[24]

The young develop in stages, with the first two (the nauplius and protozoea) occurring inside the egg. Most hermit crab larvae hatch at the third stage, the zoea. In this larval stage, the crab has several long spines, a long, narrow abdomen, and large fringed antennae. Several zoeal moults are followed by the final larval stage, the megalopa.[25]

The sexual behavior exhibited by hermit crabs varies from species to species, but a general description is as follows. If the female possesses any larvae from a previous mating, she moults and lets them go. Female hermit crabs are ready to mate shortly before moulting, and she may come in contact with a male. In certain species the male grabs the pre-moult female for sometimes hours. Prior to the female moulting, and usually continuing after she has moulted, the male performs precopulatory behaviors. These vary widely but the most common are rotating/shaking the female, and jerking the female towards the male.[26]

After some time, the female moves the chelipeds in her mouth region, signaling the male. Then they both move their bodies mostly out of their shells, and mate. Both crabs then go back inside their shells, and they may mate again. In some species the male performs post-copulatory behavior until the female has the eggs on her pleopods.

Diet

Hermit crabs are omnivorous [27] scavengers that require a varied and balanced diet to thrive. Their dietary needs can be met with a combination of commercial hermit crab food, fresh fruits, vegetables, and occasional treats. A well-rounded diet is essential not only for their general health but also for the proper development of their exoskeleton and overall vitality.

Commercial Food

High-quality commercial hermit crab food provides a convenient and nutritionally balanced foundation for a hermit crab's diet. [28] These foods are specially formulated to meet the species' specific needs and should form the majority of their daily intake. It is important to select a product that is designed for hermit crabs, as general pet foods may lack the necessary nutrients.

In The Wild

In the wild, hermit crabs are omnivorous scavengers, feeding on a varied diet of plant matter, decaying organic material, small invertebrates, and marine detritus. They look for algae, seaweed, fruits, and the remains of dead animals, providing them with essential nutrients like calcium for their exoskeleton. This diverse diet helps support their health, energy, and successful molting.

Fresh Fruits and Vegetables

In addition to commercial food, hermit crabs benefit from a variety of fresh fruits and vegetables. Recommended options include leafy greens such as spinach, as well as carrots, sweet potatoes, and broccoli. Non-citrus fruits like mango, coconut, and papaya can also be offered. [29] These foods provide essential vitamins, minerals, and hydration, which are vital for maintaining a healthy hermit crab.

Calcium and Carotene

A key component of a hermit crab's diet is calcium, which supports the health and hardness of their exoskeleton. Crushed cuttlebone, calcium-rich commercial supplements, or even ground eggshells can be provided to meet this need. [30] Additionally, carotene-rich foods such as carrots or squash are essential for promoting the development of their reddish-orange exoskeleton.

Treats and Special Foods

Occasional treats can be offered to hermit crabs to enrich their diet. These may include nuts (such as almonds or sunflower seeds), seeds, and dried seaweed. [31] While these treats should not make up a large portion of the diet, they can provide additional nutrients and variety.

Feeding Schedule

Hermit crabs are nocturnal feeders, so they should be provided with food in the evening, and any uneaten food should be removed the next morning to prevent spoilage. It is important to monitor the amount of food provided, as hermit crabs tend to eat small portions over extended periods and may consume food slowly. [32]

Freshwater and Saltwater

In addition to solid food, hermit crabs require constant access to both freshwater and saltwater for hydration and health. These should be provided in separate dishes to meet their needs for drinking and bathing. [33]

Behavior

Shells and shell remodeling

As hermit crabs grow, they require larger shells. Since suitable intact gastropod shells are sometimes a limited resource, competition often occurs between hermit crabs for shells. The availability of empty shells at any given place depends on the relative abundance of gastropods and hermit crabs, matched for size. An equally important issue is the population of organisms that prey upon gastropods and leave the shells intact.[34] Hermit crabs kept together may fight or kill a competitor to gain access to the shell they favour. However, if the crabs vary significantly in size, fights over empty shells are rare.[35] Hermit crabs with undersized shells cannot grow as fast as those with well-fitting shells, and are more likely to be eaten if they cannot retract completely into the shell.[36]

Shells used by hermit crabs have usually been remodeled by previous hermit crab owners. This involves a hermit crab hollowing out the shell, making it lighter. Only small hermit crabs are able to live without remodelled shells. Most big hermit crabs that have been transferred to a normal shell die. Even if they were able to survive, hollowing out a shell takes precious energy, making it undesirable to any hermit crab.[37] They achieve this remodeling by both chemically and physically carving out the interiors of their shell. These shells can last for generations, explaining why some hermit crabs are able to live in areas where snails have become locally extinct.[38]

There are cases when seashells are not available and hermit crabs will use alternatives such as tin cans, custom-made shells, or any other types of debris, which often proves fatal to the hermit crabs (as they can climb into, but not out of, slippery plastic debris).[39] This can even create a chain reaction of fatality, because a dead hermit crab will release a signal to tell others that a shell is available, luring more hermit crabs to their deaths. More specifically, they are attracted to the scent of dead hermit crab flesh.[40]

For some larger marine species, supporting one or more sea anemones on the shell can scare away predators. The sea anemone also benefits, because it is in a prime position to consume fragments of the hermit crab's meals. Other very close symbiotic relationships are known from encrusting bryozoans and hermit crabs forming bryoliths.[41]

In February 2024, Polish researchers reported that 10 of 16 terrestrial hermit crab species were observed using artificial shells, including discarded plastic waste, broken glass bottles and light bulbs, in lieu of natural shells.[42]

Shell fighting

Shell fighting is a behavior observed in all hermit crabs. It is a process in which the attacker hermit crab attempts to steal the shell of the victim, using a fairly intricate process. It usually only occurs if there is no empty shell suitable for the growing hermit crab. These fights are usually between the same species, though they can also occur between two separate species.[26] [43]

If the defending crab does not retreat to the inside of its shell, an aggressive interaction will usually take place, until the defending crab retreats, or the attacker flees. After the defender has retreated, the attacker will usually turn the shell over multiple times, holding it with its legs. It then places its chelipeds into the shell's opening.[44]

Then the crabs start the "positioning" behavior, this consists of the attacker moving side to side, over the opening of the defender's shell. This movement usually forms a figure 8. The attacker then goes into the aptly named "rapping" behavior. The attacker holds its legs and chepelothorax stationary, while it moves its shell down on the defender's shell. It is done quite rapidly, and is usually enough to produce an audible sound. It seems like little to no contact happens directly between the two crabs.

After a number of "raps", the defender may come out of its shell completely, usually positioning itself of one of the shells. The attacker then checks the now free shell, and then changes shell rapidly. As the crab tries its new shell, it usually holds its old shell, as it may decide to come back to the old one. The defeated crab then runs to the empty shell. If the defeated crab does not stay close to the shells, it is usually eaten.

Several hermit crab species, both terrestrial and marine, have been observed forming a vacancy chain to exchange shells. When an individual crab finds a new empty shell, or steals one from another, it will leave its own shell and inspect the vacant shell for size. If the shell is found to be too large, the crab goes back to its own shell and then waits by the vacant shell for up to 8 hours. As new crabs arrive they also inspect the shell and, if it is too big, wait with the others, forming a group of up to 20 individuals, holding onto each other in a line from the largest to the smallest crab. As soon as a crab that is the right size for the vacant shell arrives and claims it—leaving its old shell vacant—all the crabs in the queue swiftly exchange shells in sequence, each one moving up to the next size.[45] If the original shell was taken from another hermit crab, the victim is usually left without a shell, and gets eaten. Hermit crabs often "gang up" on one of their species with what they perceive to be a better shell, and pry its shell away from it before competing for it until one takes it over.[46]

Aggressive behaviors

Aggressive behaviors for hermit crabs are quite similar to one another, with some variations present between species. It usually consists of moving or positioning the legs and the chelipeds, also known as the claw or pincer. Usually these displays are enough to avoid confrontation. Sometimes two opposing crabs will do multiple actions, with no apparent pattern.[43] These confrontations usually last a few seconds, though some may last a few minutes, for those especially stubborn crabs.[26]

They can also raise a leg which is sometimes referred to as an "ambulatory raise". This can happen with multiple legs such as with the first two walking legs, or both the first and second pair. This is referred to as "double ambulatory raise", and "quadruple ambulatory raise", respectively. The exact form of this movement is variable between species. In some other species there is another distinct movement, where they move their leg away and upwards from the body, while it moves forwards, this same movement continues as the limb is brought down. This movement is sometimes called an "ambulatory poke".

They also use their chelipeds as a warning display, usually used in two distinct variations. The first one consists of the crab lifting its whole body (shell included), and spreading its legs, then moving its cheliped forward until the dactylus (top part of the claw) is perpendicular with the ground. This movement is usually called an "cheliped presentation" This position may be more distinct in some species, such as those in the genus Pagurus. The second variation called the "cheliped extension", is usually a purely visual movement, though it may sometimes be used to strike a crab. The chelipeds move forward and upwards, until the limb is parallel with the ground, usually used to push another crab out of the way. If a larger crab pushes a smaller one, the smaller one may be moved multiple centimeters.

The crabs of the family Paguridae, have another distinct type of movement. Individuals may crawl upon another's crab shell. If the size is just right the crab climbed upon may move rapidly up and down or sideways, usually causing the other crab to fall off.

Grouping behavior

Some species such as Clibanarius tricolor, Calcinus tibicen and Pagurus miamensis are semi gregarious, showing unique behaviors in groups. While these three species all show gregarious behavior, C. tricolor, forms the densest and bigger groups. The crabs of Clibanarius tricolor congregate during the day, and usually stay with their same respective group, day after day. At 4:00 p.m. the crabs would start moving in their groups, and by 5:00 p.m. they had left their congregation. The congregations usually move in one general direction, and may be close to other crabs. This behavior seems to be lost under controlled conditions, however.[26]

Associations with other animals

The shells of hermit crabs have multiple "associates" whose exact roles have not been well described. These associates are usually categorized into two groups, those who live in the interior of the shell and those who live on the exterior. Some of the interior associates include nereid worms which have a commensal relation, the worms help the hermit crabs keep their shell clean along with the crabs of the family Porcellanidae. It is not rare to see both the worms and crabs in the same shell.[47] [48]

There are also associations with Amphipods, such as the relationship between the hermit crab species Pagurus hemphilli and the amphipod genus Liljeborgia. The coloration of this amphipod matches the coloration of the hermit crab and the Crustose rhodophycean algae which commonly grows in their shells. Specimens of P. hemphilli tolerated the presence of their guest, while other hermit crab species attempted eating them.[49]

Some of the exterior associates are the epifauna, such as barnacles and Crepidula, which may be a hindrance to the crabs, as they may ruin the stability or just add weight to the shell. Some species of hermit crabs have live colonies of Hydractina, while others rejected them. Some species just keep the colony in their shells, while others are actively detaching and re-attaching the sea anemone. Most hermit crabs attempt to place the most anemones as possible, while some others steal the anemone another hermit crab is carrying. There is a mutually beneficial relationship between the two, as they help defend against predators.

Hermit crabs as pets

Several marine species of hermit crabs are common in the marine aquarium trade. They are commonly kept in reef fish tanks.

Two of the most common terrestrial hermit crabs kept as pets are the Caribbean hermit crab (Coenobita clypeatus), and the Ecuadorian hermit crab (Coenobita compressus).[50] Despite their reputation as 'throwaway' and 'low maintenance' pets, hermit crabs can actually live for up to 15 or more years with proper care.[51] The oldest known pet hermit crab lived for 45 years.[52] Hermit crabs need a proper tank set up that will provide all of their needs in order to thrive.[53] Hermit crabs should not be regularly handled, they are prey animals and typically panic while being handled, which can cause injury to the crab or the owner. Hermit crabs will try to hide when scared. They will also pinch, which can break skin. A drop or a fall onto hard surfaces can be lethal to a hermit crab.[54]

Hermit crabs need a consistent temperature of 75-85°F, and a consistent humidity of 75-85% humidity. Low humidity will result in a hermit crab slowly suffocating.[55] Hermit crabs breathe using modified gills. These modified gills need to be moist in order to function.[56] Hermit crabs should be kept in glass tanks of an appropriate size in order to maintain the humidity and temperature needed. At least 10 gallons of tank space should be provided per hermit crab. Overcrowding a tank can result in aggressiveness and cannibalism between crabs.[57]

Hermit crabs also require both salt water and freshwater sources deep enough for the crab to fully submerge. All water should be treated to remove chemicals, and saltwater should be prepared using a marine grade salt mix. Further, like many pets, hermit crabs need enrichment and need opportunities for hiding and climbing. Huts, wood, and artificial plants can be used to fill this need. In the wild hermit crabs may walk several miles a night for purposes of foraging or migration. Hermit crabs are nocturnal and will be most active during the night.

References

Notes and References

  1. Patsy McLaughlin & Michael Türkay . 2011 . Paguroidea . Paguroidea . 106687 . November 25, 2011.
  2. Hazlett. B.A.. 1981. The Behavioral Ecology of Hermit Crabs. Annual Review of Ecology and Systematics. 12. 1. 1–22. 10.1146/annurev.es.12.110181.000245. 0066-4162. subscription.
  3. . J. D. MacDonald . R. B. Pike . D. I. Williamson . 1957 . 128 . 2 . 209–257 . Larvae of the British Species of Diogenes, Pagurus, Anapagurus,and Lithodes . 10.1111/j.1096-3642.1957.tb00265.x.
  4. C. W. Cunningham . N. W. Blackstone . L. W. Buss . 1992 . Evolution of king crabs from hermit crab ancestors . . 355 . 6360 . 539–542 . 10.1038/355539a0 . 1741031 . 1992Natur.355..539C. 4257029 .
  5. C. L. Morrison . A. W. Harvey . S. Lavery . K. Tieu . Y. Huang . C. W. Cunningham . 2001 . Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form . . 269 . 1489 . 345–350 . 10.1098/rspb.2001.1886 . 11886621 . 1690904 . 2012-01-02 . 2010-06-10 . https://web.archive.org/web/20100610111946/http://www.biology.duke.edu/cunningham/pdfs/Morrison%20et%20al.pdf . dead .
  6. Tsang. L. M.. Chan. T.-Y.. Ahyong. S. T.. Chu. K. H.. Hermit to king, or Hermit to All: Multiple Transitions to Crab-like Forms from Hermit Crab Ancestors. Systematic Biology. 60. 5. 2011. 616–629. 10.1093/sysbio/syr063. 21835822.
  7. Patsy A. McLaughlin . Rafael Lemaitre . 1997 . Carcinization in the anomura – fact or fiction? I. Evidence from adult morphology . . 67 . 2 . 79–123 . 10.1163/18759866-06702001 . free . 46992448 . PDF
  8. . 2009 . Suppl. 21 . 1–109 . A classification of living and fossil genera of decapod crustaceans . Sammy De Grave . N. Dean Pentcheff . Shane T. Ahyong . etal . dead . https://web.archive.org/web/20110606064728/http://rmbr.nus.edu.sg/rbz/biblio/s21/s21rbz1-109.pdf . 2011-06-06 .
  9. Book: Poore . Gary C. B. . Marine Decapod Crustacea: A Guide to Families and Genera of the World . Ahyong . Shane T. . CRC Press . 2023 . 978-1-4863-1178-1.
  10. Patsy A. McLaughlin . Tomoyuki Komai . Rafael Lemaitre . Dwi Listyo Rahayu . 2010 . Martyn E. Y. Low . S. H. Tan . Annotated checklist of anomuran decapod crustaceans of the world (exclusive of the Kiwaoidea and families Chirostylidae and Galatheidae of the Galatheoidea) - Chapter: Part I – Lithodoidea, Lomisoidea and Paguroidea . . Suppl. 23 . 5–107 . dead . https://web.archive.org/web/20120122104557/http://rmbr.nus.edu.sg/rbz/biblio/s23/s23rbz005-107.pdf . 2012-01-22 .
  11. René H.B. Fraaije . Barry W.M. Van Bakel . John W.M. Jagt . A new paguroid from the type Maastrichtian (upper Cretaceous, the Netherlands) and erection of a new family . . 2017 . 188 . 3 . 1–4 . 10.1051/bsgf/2017185 . subscription .
  12. René H. B. Fraaije . Adiël A. Klompmaker . Pedro Artal . 2012 . New species, genera and a family of hermit crabs (Crustacea, Anomura, Paguroidea) from a mid-Cretaceous reef of Navarra, northern Spain . . 263 . 1 . 85–92 . 10.1127/0077-7749/2012/0213.
  13. Wolfe . Joanna M. . Breinholt . Jesse W. . Crandall . Keith A. . Lemmon . Alan R. . Lemmon . Emily Moriarty . Timm . Laura E. . Siddall . Mark E. . Bracken-Grissom . Heather D. . 6 . 24 April 2019 . A phylogenomic framework, evolutionary timeline and genomic resources for comparative studies of decapod crustaceans . Proceedings of the Royal Society B . 286 . 1901 . 10.1098/rspb.2019.0079 . free . 31014217 . 6501934.
  14. René H. Fraaije . January 2003 . The oldest in situ hermit crab from the Lower Cretaceous of Speeton, UK . . 46 . 53–57 . 10.1111/1475-4983.00286 . 1. 2003Palgy..46...53F . 128545998 . free .
  15. Mironenko. Aleksandr. January 2020. A hermit crab preserved inside an ammonite shell from the Upper Jurassic of central Russia: Implications to ammonoid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology. en. 537. 109397. 10.1016/j.palaeo.2019.109397. 2020PPP...53709397M. 210298770 .
  16. Fraaije. René. Schweigert. Günter. Nützel. Alexander. Havlik. Philipe. 2013-01-01. New Early Jurassic hermit crabs from Germany and France. Journal of Crustacean Biology. en. 33. 6. 802–817. 10.1163/1937240X-00002191. 0278-0372. free.
  17. Web site: W. Michael . Scott . Aquarium Hermit Crabs . Fishchannel.com.
  18. Web site: Species Pictorial Guide - HCA: Hermit Crab Association . 2024-11-21 . www.hermitcrabassociation.com.
  19. Web site: Michael . 2022-12-21 . Coenobita Compressus – Detailed Guide: Care, Diet, and Breeding . 2024-11-21 . Shrimp and Snail Breeder . en-US.
  20. Web site: Purple Pincher Hermit Crab, Coenobita clypeatus . 2024-11-21 . www.thecephalopodpage.org.
  21. Book: Ray W. Ingle . 1997 . Crayfishes, lobsters, and crabs of Europe: an illustrated guide to common and traded species . . 978-0-412-71060-5 . Hermit and stone crabs (Paguroidea) . 83–98 . https://books.google.com/books?id=x-qVGbTAOiEC&pg=PA83.
  22. . 305 . 2004 . Hermit crab biocoenoses: a worldwide review of the biodiversity and natural history of hermit crab associates . Jason D. Williams . John J. McDermott . 1 . 1–128 . 10.1016/j.jembe.2004.02.020 . 2004JEMBE.305....1W . 2020-01-13 . https://web.archive.org/web/20160304051406/http://people.hofstra.edu/jason_d_williams/Publications/Williams%26McDermott2004%20copy.pdf . 2016-03-04 . dead .
  23. Journal of Comparative Physiology A . 188 . 10 . 2002 . 10.1007/s00359-002-0362-2 . Mechanoreceptors innervating soft cuticle in the abdomen of the hermit crab, Pagurus pollicarus . W. D. Chapple . 753–766. 12466951. 7105940 .
  24. Grubb, P. . 1971 . Ecology of terrestrial decapod crustaceans on Aldabra . . 260 . 836 . 411–416 . 1971RSPTB.260..411G . 10.1098/rstb.1971.0020 .
  25. Squires, H.J. . 1996 . Larvae of the hermit crab, Pagurus arcuatus, from the plankton (Crustacea, Decapoda) . . 18 . 43–56 . 10.2960/J.v18.a3 . free.
  26. Hazlett . Brian A. . 1966-01-01 . Social behavior of the Paguridae and Diogenidae of Curaçao . live . Studies on the Fauna of Curaçao and other Caribbean Islands . en . 23 . 1 . 1–143 . 0166-5189 . https://web.archive.org/web/20230103182522/https://repository.naturalis.nl/pub/506197/ . 2023-01-03 . 2023-01-06.
  27. Web site: Hermit Crab Care Sheet . 2024-11-21 . www.petmd.com . en.
  28. Web site: Petco . July 18, 2024 . Hermit Crab Care Sheet . live.
  29. Web site: July 28, 2022 . Hermit Crab Care Sheet . live . Boop by Petco.
  30. Web site: July 28, 2022 . Hermit Crab Care Sheet . live . Boop By Petco.
  31. Web site: July 28, 2022 . Hermit Crab Care Sheet . live . Boop by Petco.
  32. Web site: July 28, 2022 . Hermit Crab Care Sheet . live . Boop by Petco.
  33. Web site: What Do Hermit Crabs Eat? . 2024-11-14 . The Spruce Pets . en.
  34. Shell acquisition by hermit crabs: which tactic is more efficient? . Elena Tricarico . Francesca Gherardi. Francesca Gherardi . . 60 . 4 . 492–500 . August 2006 . 10.1007/s00265-006-0191-3. 2006BEcoS..60..492T . 2158/210264 . 23622893 . free .
  35. Randi D. Rotjan . Jeffrey R. Chabot . Sara M. Lewis . 2010 . Social context of shell acquisition in Coenobita clypeatus hermit crabs . . 21 . 3 . 639–646 . 1465-7279. 10.1093/beheco/arq027. 10.1093/beheco/arq027 . free .
  36. Effects of shell fit on the biology of the hermit crab Pagurus longicarpus (Say) . Jennifer E. Angel . . 243 . 2 . 169–184 . 2000 . 10.1016/S0022-0981(99)00119-7. 2000JEMBE.243..169A .
  37. Web site: S . Robert . ers . relations . Media . 2012-10-26 . Hermit crabs socialize to evict their neighbors . live . https://web.archive.org/web/20230106010500/https://news.berkeley.edu/2012/10/26/hermit-crabs-socialize-to-evict-their-neighbors/ . 2023-01-06 . 2023-01-06 . Berkeley News . en-US.
  38. Web site: The Social Lives of Hermits Natural History Magazine . live . https://web.archive.org/web/20221126004625/https://www.naturalhistorymag.com/features/122719/the-social-lives-of-hermits . 2022-11-26 . 2023-01-06 . www.naturalhistorymag.com.
  39. News: Sophie. Lewis. Dec 7, 2019. Plastic pollution has killed half a million hermit crabs that confused trash for shells. CBS News.
  40. Web site: 2019-02-25 . Hermit crabs are drawn to the smell of their own dead . 2024-01-29 . en-US.
  41. A. Klicpera . Paul D. Taylor . H. Westphal . 2013 . Bryoliths constructed by bryozoans in symbiotic associations with hermit crabs in a tropical heterozoan carbonate system, Golfe d'Arguin, Mauritania . . 43 . 4 . 429 . 10.1007/s12526-013-0173-4. 2013MarBd..43..429K . 15841444 .
  42. Jagiello . Zuzanna . Dylewski . Łukasz . Szulkin . Marta . The plastic homes of hermit crabs in the Anthropocene . Science of the Total Environment . 168959 . 10.1016/j.scitotenv.2023.168959 . 25 February 2024. 913 . free . 38185570 . 2024ScTEn.91368959J .
  43. Hazlett . Brian A. . 2009 . Notes on the Social Behavior of Some Hawaiian Hermit Crabs (Decapoda, Anomura) . live . Crustaceana . 82 . 6 . 763–768 . 10.1163/156854009X423193 . 27743330 . 0011-216X . https://web.archive.org/web/20230107005928/https://www.jstor.org/stable/27743330 . 2023-01-07 . 2023-01-07. subscription .
  44. Hazlett . Brian A. . 1966-01-01 . Social behavior of the Paguridae and Diogenidae of Curaçao . live . Studies on the Fauna of Curaçao and other Caribbean Islands . en . 23 . 1 . 1–143 . 0166-5189 . https://web.archive.org/web/20230103182522/https://repository.naturalis.nl/pub/506197/ . 2023-01-03 . 2023-01-06.
  45. Web site: Ferris Jabr . 5 June 2012 . On a Tiny Caribbean Island, Hermit Crabs Form Sophisticated Social Networks . 6 November 2014 . Scientific American .
  46. News: Robert Sanders . October 26, 2012 . Hermit crabs socialize to evict their neighbors . . October 27, 2012.
  47. Ayón Parente . Manuel . Hendrickx . Michel E. . March 2000 . Pisidia magdalenensis (Crustacea: Porcellanidae) commensal of the diogenid hermit crab Petrochirus californiensis (Decapoda: Diogenidae). . live . Revista de Biología Tropical . en . 48 . 1 . 265–266 . 0034-7744 . https://web.archive.org/web/20230107232740/https://www.researchgate.net/publication/262552174_Pisidia_magdalenensis_Crustacea_Porcellanidae_commensal_of_the_diogenid_hermit_crab_Petrochirus_californiensis_Decapoda_Diogenidae . 2023-01-07 . 2023-01-07.
  48. Hazlett . Brian A. . 1981 . The Behavioral Ecology of Hermit Crabs . live . Annual Review of Ecology and Systematics . 12 . 1–22 . 10.1146/annurev.es.12.110181.000245 . 2097103 . 0066-4162 . https://web.archive.org/web/20230106063318/https://www.jstor.org/stable/2097103 . 2023-01-06 . 2023-01-07. subscription .
  49. Taylor . Phillip R. . 1979-07-01 . An association between an amphipod, Liljeborgia sp., and the hermit crab, Pagurus hemphilli (Benedict) . Marine Behaviour and Physiology . 6 . 3 . 185–188 . 10.1080/10236247909378565 . 0091-181X .
  50. Web site: Hermits: The Unfortunate Victims of Society . 2024-11-19 . awionline.org . en.
  51. Web site: Caring for your Hermit Crab . 2024-11-26 . Pets Domain . en.
  52. Web site: 2015-03-28 . Carol ‘CrabWorks’ Ormes . 2024-11-26 . The Crab Street Journal . en-US.
  53. Web site: 2016-03-23 . Setting up a Proper Hermit Crab Habitat (crabitat) . 2024-11-26 . The Crab Street Journal . en-US.
  54. Web site: 2020-03-26 . Hermit Crabs - A Hands Off Pet . 2024-11-26 . The Crab Street Journal . en-US.
  55. Web site: Cloud . Whisker . 2023-05-23 . Hermit Crab Care – Crestwood Animal Hospital . 2024-11-26 . crestwoodvethospital.com . en-US.
  56. Web site: Hermit Crab Anatomy . 2024-11-26 . www.hermitcrabpatch.com.
  57. Web site: 2015-05-03 . Cannibalism . 2024-11-26 . The Crab Street Journal . en-US.