In the Standard Model, using quantum field theory it is conventional to use the helicity basis to simplify calculations (of cross sections, for example). In this basis, the spin is quantized along the axis in the direction of motion of the particle.
The two-component helicity eigenstates
\xiλ
\sigma ⋅ \hat{p}\xiλ\left(\hat{p}\right)=λ\xiλ\left(\hat{p}\right)
where
\sigma
\hat{p}
λ=\pm1
\hat{p}
To say more about the state,
\xiλ
p\mu=\left(E,\left|\vec{p}\right|\sin{\theta}\cos{\phi},\left|\vec{p}\right|\sin{\theta}\sin{\phi},\left|\vec{p}\right|\cos{\theta}\right)
Then one can say the two helicity eigenstates are
\xi+1(\vec{p})=
1 | |
\sqrt{2\left|\vec{p |
\right|\left(\left|\vec{p}\right|+pz\right)}}\begin{pmatrix} \left|\vec{p}\right|+pz\\ px+ipy \end{pmatrix}=\begin{pmatrix} \cos{
\theta | |
2 |
and
\xi-1(\vec{p})=
1 | |
\sqrt{2|\vec{p |
|(|\vec{p}|+pz)}}\begin{pmatrix} -px+ipy\\ \left|\vec{p}\right|+pz \end{pmatrix}=\begin{pmatrix} -e-i\phi\sin{
\theta | |
2 |
These can be simplified by defining the z-axis such that the momentum direction is either parallel or anti-parallel, or rather:
\hat{z}=\pm\hat{p}
In this situation the helicity eigenstates are for when the particle momentum is
\hat{p}=+\hat{z}
\xi+1(\hat{z})=\begin{pmatrix} 1\\ 0 \end{pmatrix}
\xi-1(\hat{z})=\begin{pmatrix} 0\\ 1 \end{pmatrix}
then for when momentum is
\hat{p}=-\hat{z}
\xi+1(-\hat{z})=\begin{pmatrix} 0\\ 1 \end{pmatrix}
\xi-1(-\hat{z})=\begin{pmatrix} -1\\ 0 \end{pmatrix}
A fermion 4-component wave function,
\psi
\psi(x)=\int{
d3p | |
(2\pi)3\sqrt{2E |
}\sumλ
λ | |
{\left(\hat{a} | |
p |
uλ(p)e-i+
λ | |
\hat{b} | |
p |
vλ(p)ei\right)}}
where
λ | |
\hat{a} | |
p |
λ | |
\hat{b} | |
p |
uλ(p)
vλ(p)
Put it more explicitly, the Dirac spinors in the helicity basis for a fermion is
uλ(p)=\begin{pmatrix} u-1\\ u+1\end{pmatrix}=\begin{pmatrix} \sqrt{E-λ\left|\vec{p}\right|}\chiλ(\hat{p})\\ \sqrt{E+λ\left|\vec{p}\right|}\chiλ(\hat{p}) \end{pmatrix}
and for an anti-fermion,
vλ(p)=\begin{pmatrix} v+1\\ v-1\end{pmatrix}=\begin{pmatrix} -λ\sqrt{E+λ\left|\vec{p}\right|}\chi-λ(\hat{p})\\ λ\sqrt{E-λ\left|\vec{p}\right|}\chi-λ(\hat{p}) \end{pmatrix}
To use these helicity states, one can use the Weyl (chiral) representation for the Dirac matrices.
The plane wave expansion is
\psi(x)= \int{
d3p | |
(2\pi)3\sqrt{2E |
q\mu=(E,qx,qy,qz)
\begin{align} \epsilon\mu(q,x)&=
1 | |
\left|\vec{q |
\right|qT
where
qT=
2 | |
\sqrt{q | |
x |
+
2} | |
q | |
y |
E=\sqrt{|\vec{q}|2+m2}