In mathematical analysis, the Hardy–Littlewood inequality, named after G. H. Hardy and John Edensor Littlewood, states that if
f
g
n
Rn
\int | |
Rn |
f(x)g(x)dx\leq
\int | |
Rn |
f*(x)g*(x)dx
where
f*
g*
f
g
The decreasing rearrangement
f*
f
r>0
Ef(r)=\left\{x\inX:f(x)>r\right\}
E | |
f* |
(r)=\left\{x\inX:f*(x)>r\right\}
have the same volume (
n
E | |
f* |
(r)
Rn
x=0
The layer cake representation[1] [2] allows us to write the general functions
f
g
f(x)=
infty | |
\int | |
0 |
\chif(x)>rdr
g(x)=
infty | |
\int | |
0 |
\chig(x)>sds
where
r\mapsto\chif(x)>r
1
r<f(x)
0
s\mapsto\chig(x)>s
1
s<g(x)
0
Now the proof can be obtained by first using Fubini's theorem to interchange the order of integration. When integrating with respect to
x\inRn
f(x)>r
g(x)>s
x\mapsto
\chi | |
Ef(r) |
(x)
x\mapsto
\chi | |
Eg(s) |
(x)
Ef(r)
Eg(s)
\int | |
Rn |
f(x)g(x)dx=
\displaystyle\int | |
Rn |
infty | |
\int | |
0 |
\chif(x)>rdr
infty | |
\int | |
0 |
\chig(x)>sdsdx=
\int | |
Rn |
infty | |
\int | |
0 |
infty | |
\int | |
0 |
\chif(x)>r \chig(x)>sdrdsdx
=
infty | |
\int | |
0 |
infty | |
\int | |
0 |
\int | |
Rn |
\chi | |
Ef(r) |
(x)
\chi | |
Eg(s) |
(x)dxdrds =
infty | |
\int | |
0 |
infty | |
\int | |
0 |
\int | |
Rn |
\chi | |
Ef(r)\capEg(s) |
(x)dxdrds.
Denoting by
\mu
n
=
infty | |
\int | |
0 |
infty | |
\int | |
0 |
\mu\left(Ef(r)\capEg(s)\right)drds
\leq
infty | |
\int | |
0 |
infty | |
\int | |
0 |
min\left\{\mu(Ef(r)),\mu(Eg(s))\right\}drds
=
infty | |
\int | |
0 |
infty | |
\int | |
0 |
min\left\{\mu(E | |
f* |
(r)),
\mu(E | |
g* |
(s))\right\}drds.
Now, we use that the superlevel sets
E | |
f* |
(r)
E | |
g* |
(s)
Rn
x=0
E | |
f* |
(r)\cap
E | |
g* |
(s)
=
infty | |
\int | |
0 |
infty | |
\int | |
0 |
\mu\left(
E | |
f* |
(r)\cap
E | |
g* |
(s)\right)drds
=
\int | |
Rn |
f*(x)g*(x)dx
The last identity follows by reversing the initial five steps that even work for general functions. This finishes the proof.
Let random variable
X
\mu
\sigma2
0<\delta<1
\deltath
X
\begin{align} \operatorname{E}\left[
1 | |
\vertX\vert\delta |
\right]&\leq
| ||||
2 |
| |||||
\sigma\delta\sqrt{2\pi |
}irrespectiveofthevalueof\mu\inR.\end{align}
The technique that is used to obtain the above property of the Normal distribution can be utilized for other unimodal distributions.