Greek fire was an incendiary weapon system used by the Byzantine Empire from the seventh to the fourteenth centuries. The recipe for Greek fire was a closely-guarded state secret; historians have variously speculated that it was based on saltpeter, sulfur, or quicklime, but most modern scholars agree that it was based on petroleum mixed with resins, comparable in composition to modern napalm. Byzantine sailors would toss grenades loaded with Greek fire onto enemy ships or spray it from tubes. Its ability to burn on water made it an effective and destructive naval incendiary weapon, and rival powers tried unsuccessfully to copy the material.
Usage of the term "Greek fire" has been general in English and most other languages since the Crusades. Original Byzantine sources called the substance a variety of names, such as "sea fire" (Medieval Greek: Greek, Ancient (to 1453);: πῦρ θαλάσσιον), "Roman fire" (Greek, Ancient (to 1453);: πῦρ ῥωμαϊκόν), "war fire" (Greek, Ancient (to 1453);: πολεμικὸν πῦρ), "liquid fire" (Greek, Ancient (to 1453);: ὑγρὸν πῦρ), "sticky fire" (Greek, Ancient (to 1453);: πῦρ κολλητικόν), or "manufactured fire" (Greek, Ancient (to 1453);: πῦρ σκευαστόν).
Incendiary and flaming weapons were used in warfare for centuries before Greek fire was invented. They included sulfur-, petroleum-, and bitumen-based mixtures. Incendiary arrows and pots or small pouches containing combustible substances surrounded by caltrops or spikes, or launched by catapults, were used by the 9th century BC by the Assyrians and were extensively used in the Greco-Roman world as well. Thucydides mentions that in the siege of Delium in 424 BC a long tube on wheels was used which blew flames forward using a large bellows.[1] The Graeco-Roman treatise Greek, Ancient (to 1453);: Kestoi, compiled in the late 2nd or early 3rd century AD and traditionally ascribed to Julius Africanus, records a mixture that ignited from adequate heat and intense sunlight, used in grenades or night attacks:
In naval warfare, the Byzantine emperor Anastasius I is recorded by chronicler John Malalas to have been advised by a philosopher from Athens called Proclus to use sulfur to burn the ships of the rebel general Vitalian.
Greek fire proper was developed in and is ascribed by the chronicler Theophanes the Confessor to Kallinikos (Latinized Callinicus), a Jewish architect from Heliopolis, in Syria, by then overrun by the Muslim conquests:[2]
The accuracy and exact chronology of this account is open to question: elsewhere, Theophanes reports the use of fire-carrying ships equipped with nozzles (Greek, Ancient (to 1453);: siphōn)[3] by the Byzantines a couple of years before the supposed arrival of Kallinikos at Constantinople. If this is not due to chronological confusion of the events of the siege, it may suggest that Kallinikos introduced an improved version of an established weapon. The historian James Partington thinks it likely that Greek fire was not the creation of any single person but "invented by chemists in Constantinople who had inherited the discoveries of the Alexandrian chemical school". The 11th-century chronicler George Kedrenos records that Kallinikos came from Heliopolis in Egypt, but most scholars reject this as an error. Kedrenos also records the story, considered implausible by modern scholars, that Kallinikos' descendants, a family called Greek, Ancient (to 1453);: Lampros, "brilliant", kept the secret of the fire's manufacture and continued doing so to Kedrenos' time.
Kallinikos' development of Greek fire came at a critical moment in the Byzantine Empire's history: weakened by its long wars with Sassanid Persia, the Byzantines had been unable to effectively resist the onslaught of the Muslim conquests. Within a generation, Syria, Palestine, and Egypt had fallen to the Arabs, who in set out to conquer the imperial capital of Constantinople. Greek fire was used to great effect against the Muslim fleets, helping to repel the Muslims at the first and second Arab sieges of the city. Records of its use in later naval battles against the Saracens are more sporadic, but it secured victories during the Byzantine expansion in the late 9th and early 10th centuries. Use of the substance was prominent in Byzantine civil wars, chiefly the revolt of the thematic fleets in 727 and the large-scale rebellion led by Thomas the Slav in 821–823. In both cases, the rebel fleets were defeated by the Constantinople-based central Imperial fleet through the use of Greek fire. The Byzantines also used the weapon to devastating effect against the various Rus' raids on the Bosporus, especially those of 941 and 1043, as well as during the Bulgarian war of 970–971, when the fire-carrying Byzantine ships blockaded the Danube.
The importance placed on Greek fire during the Empire's struggle against the Arabs led to its discovery being ascribed to divine intervention. The Emperor Constantine Porphyrogennetos, in his book Latin: [[De Administrando Imperio]], admonishes his son and heir, Romanos II, never to reveal the secrets of its composition, as it was "shown and revealed by an angel to the great and holy first Christian emperor Constantine" and that the angel bound him "not to prepare this fire but for Christians, and only in the imperial city". As a warning, he adds that one official, who was bribed into handing some of it over to the Empire's enemies, was struck down by a "flame from heaven" as he was about to enter a church. As the latter incident demonstrates, the Byzantines could not avoid capture of their secret weapon: the Arabs captured at least one fireship intact in 827, and the Bulgars captured several Greek, Ancient (to 1453);: siphōns and much of the substance itself in 812/814. This was apparently not enough to allow their enemies to copy it (see below). The Arabs used various incendiary substances similar to the Byzantine weapon, but were never able to copy the Byzantine method of deployment by Greek, Ancient (to 1453);: siphōn, and used catapults and grenades instead.
Greek fire continued to be mentioned during the 12th century, and Anna Komnene gives a vivid description of its use in a naval battle against the Pisans in 1099. The use of hastily improvised fireships is mentioned during the 1203 siege of Constantinople by the Fourth Crusade, but no report confirms the use of Greek fire. This might be because of the general disarmament of the Empire in the 20 years leading up to the sacking, or because the Byzantines had lost access to the areas where the primary ingredients were to be found, or even perhaps because the secret had been lost over time.
Records of a 13th-century use of "Greek fire" by the Saracens against the Crusaders can be read through the Memoirs of the Lord of Joinville during the Seventh Crusade. One description of the memoir says "the tail of fire that trailed behind it was as big as a great spear; and it made such a noise as it came, that it sounded like the thunder of heaven. It looked like a dragon flying through the air. Such a bright light did it cast, that one could see all over the camp as though it were day, by reason of the great mass of fire, and the brilliance of the light that it shed."[4]
In the 19th century, it is reported that an Armenian called Kavafian approached the government of the Ottoman Empire with a new type of Greek fire he claimed to have developed. Kavafian refused to reveal its composition when asked by the government, insisting that he be placed in command of its use during naval engagements. Not long after this, he was poisoned by imperial authorities, without their ever having found out his secret.[5]
As Constantine Porphyrogennetos' warnings show, the ingredients and the processes of manufacture and deployment of Greek fire were carefully guarded military secrets. So strict was the secrecy that the composition of Greek fire was lost forever and remains a source of speculation. The mystery of the formula has long dominated the research into Greek fire. Despite this almost exclusive focus, Greek fire is best understood as a complete weapon system of many components, all of which were needed to operate together to render it effective. This comprised not only the formula of its composition, but also the specialized dromon ships that carried it into battle, the device used to prepare the substance by heating and pressurizing it, the Greek, Ancient (to 1453);: siphōn projecting it, and the special training of the Greek, Ancient (to 1453);: siphōnarioi who used it. Knowledge of the whole system was highly compartmentalised, with operators and technicians aware of the secrets of only one component, ensuring that no enemy could gain knowledge of it in its entirety. This accounts for the fact that when the Bulgarians took Mesembria and Debeltos in 814, they captured 36 Greek, Ancient (to 1453);: siphōns and even quantities of the substance itself, but were unable to make any use of them.
The information available on Greek fire is indirect, based on references in the Byzantine military manuals and secondary historical sources such as Anna Komnene and Western European chroniclers, which are often inaccurate. In her Alexiad, Anna Komnene provides a description of an incendiary weapon, which was used by the Byzantine garrison of Dyrrhachium in 1108 against the Normans. It is often regarded as an at least partial "recipe" for Greek fire:[6]
At the same time, the reports by Western chroniclers of the famed Latin: ignis graecus are largely unreliable, since they apply the name to all incendiary substances.
In attempting to reconstruct the Greek fire system, the evidence from the contemporary literary references provides the following characteristics:
The first and, for a long time, most popular theory regarding the composition of Greek fire held that its chief ingredient was saltpeter, making it an early form of gunpowder. This argument was based on the "thunder and smoke" description, as well as on the distance the flame could be projected from the Greek, Ancient (to 1453);: siphōn, which suggested an explosive discharge. From the times of Isaac Vossius, several scholars adhered to this position, most notably the so-called "French school" during the 19th century, which included chemist Marcellin Berthelot.
This view has subsequently been rejected, since saltpeter does not appear to have been used in warfare in Europe or the Middle East before the 13th century, and is absent from the accounts of the Muslim writers – the foremost chemists of the early medieval world – before the same period. In addition, the behavior of the suggested mixture would have been very different from the Greek, Ancient (to 1453);: siphōn-projected substance described by Byzantine sources.
A second view, based on the fact that Greek fire was inextinguishable by water (some sources suggest that water intensified the flames), suggested that its destructive power was the result of the explosive reaction between water and quicklime. Although quicklime was known and used by the Byzantines and the Arabs in warfare, the theory is refuted by literary and empirical evidence. A quicklime-based substance would have to come in contact with water to ignite, while Emperor Leo's Latin: [[Tactica of Emperor Leo VI the Wise|Tactica]] indicates that Greek fire was often poured directly onto the decks of enemy ships,[8] although admittedly, decks were kept wet due to lack of sealants. Likewise, Leo describes the use of grenades,[9] which further reinforces the view that contact with water was not necessary for the substance's ignition. Zenghelis (1932) pointed out that, based on experiments, the result of the water–quicklime reaction would be negligible in the open sea.
Another similar proposition suggested that Kallinikos had discovered calcium phosphide, which can be made by boiling bones in urine in a sealed vessel.[10] On contact with water it releases phosphine, which ignites spontaneously. Extensive experiments with calcium phosphide also failed to reproduce the described intensity of Greek fire.
Consequently, although the presence of either quicklime or saltpeter in the mixture cannot be entirely excluded, they were not the primary ingredient. Most modern scholars agree that Greek fire was based on either crude or refined petroleum, comparable to modern napalm. The Byzantines had easy access to crude oil from the naturally occurring wells around the Black Sea (e.g., the wells around Tmutorakan noted by Constantine Porphyrogennetos) or in various locations throughout the Middle East. An alternate name for Greek fire was "Median fire" (Greek, Ancient (to 1453);: μηδικὸν πῦρ), and the 6th-century historian Procopius records that crude oil, called "naphtha" (in Greek: Greek, Ancient (to 1453);: νάφθα Greek, Ancient (to 1453);: náphtha, from Old Persian Persian, Old (ca.600-400 B.C.);: [[wikt:|]] Persian, Old (ca.600-400 B.C.);: naft) by the Persians, was known to the Greeks as "Median oil" (Greek, Ancient (to 1453);: μηδικὸν ἔλαιον).[11] This seems to corroborate the availability of naphtha as a basic ingredient of Greek fire.
Naphtha was also used by the Abbasids in the 9th century, with special troops, the Arabic: naffāṭūn, who wore thick protective suits and used small copper vessels containing burning oil, which they threw onto the enemy troops. There is also a surviving 9th-century Latin text, preserved at Wolfenbüttel in Germany, which mentions the ingredients of what appears to be Greek fire and the operation of the Greek, Ancient (to 1453);: siphōns used to project it. Although the text contains some inaccuracies, it identifies the main component as naphtha. Resins were probably added as a thickener (the Latin: [[Praecepta Militaria]] refer to the substance as Greek, Ancient (to 1453);: πῦρ κολλητικόν, "sticky fire"), and to increase the duration and intensity of the flame. A modern theoretical concoction included the use of pine tar and animal fat.[12]
A 12th-century treatise prepared by Mardi bin Ali al-Tarsusi for Saladin records an Arab version of Greek fire, called Arabic: naft, which also had a petroleum base, with sulfur and various resins added. Any direct relation with the Byzantine formula is unlikely. An Italian recipe from the 16th century has been recorded for recreational use; it includes charcoal from a willow tree, saltpeter (Italian: sale ardente), alcohol, sulfur, incense, tar (Italian: pegola), wool, and camphor; the concoction was guaranteed to "burn under water" and to be "beautiful".[13]
The chief method of deployment of Greek fire, which sets it apart from similar substances, was its projection through a tube (siphōn), for use aboard ships or in sieges. Portable projectors (cheirosiphōnes, χειροσίφωνες) were also invented, reputedly by Emperor Leo VI. The Byzantine military manuals also mention that jars (chytrai or tzykalia) filled with Greek fire and caltrops wrapped with tow and soaked in the substance were thrown by catapults, while pivoting cranes (gerania) were employed to pour it upon enemy ships. The cheirosiphōnes especially were prescribed for use at land and in sieges, both against siege machines and against defenders on the walls, by several 10th-century military authors, and their use is depicted in the Poliorcetica of Hero of Byzantium. The Byzantine dromons usually had a siphōn installed on their prow under the forecastle, but additional devices could also be placed elsewhere on the ship. Thus in 941, when the Byzantines were facing the vastly more numerous Rus' fleet, siphōns were placed also amidships and even astern.
The use of tubular projectors (σίφων, siphōn) is amply attested in the contemporary sources. Anna Komnene gives this account of beast-shaped Greek fire projectors being mounted to the bow of warships:
As he [the Emperor [[Alexios I Komnenos|Alexios I]]] knew that the Pisans were skilled in sea warfare and dreaded a battle with them, on the prow of each ship he had a head fixed of a lion or other land-animal, made in brass or iron with the mouth open and then gilded over, so that their mere aspect was terrifying. And the fire which was to be directed against the enemy through tubes he made to pass through the mouths of the beasts, so that it seemed as if the lions and the other similar monsters were vomiting the fire.
Some sources provide more information on the composition and function of the whole mechanism. The Wolfenbüttel manuscript provides the following description:
...having built a furnace right at the front of the ship, they set on it a copper vessel full of these things, having put fire underneath. And one of them, having made a bronze tube similar to that which the rustics call a squitiatoria, "squirt," with which boys play, they spray [it] at the enemy.
Another, possibly first-hand, account of the use of Greek fire comes from the 11th-century Yngvars saga víðförla, in which the Viking Ingvar the Far-Travelled faces ships equipped with Greek fire weapons:
[They] began blowing with smiths’ bellows at a furnace in which there was fire and there came from it a great din. There stood there also a brass [or bronze] tube and from it flew much fire against one ship, and it burned up in a short time so that all of it became white ashes...The account, albeit embellished, corresponds with many of the characteristics of Greek fire known from other sources, such as a loud roar that accompanied its discharge. These two texts are also the only two sources that explicitly mention that the substance was heated over a furnace before being discharged; although the validity of this information is open to question, modern reconstructions have relied upon them.
Based on these descriptions and the Byzantine sources, John Haldon and Maurice Byrne designed a hypothetical apparatus as consisting of three main components: a bronze pump, which was used to pressurize the oil; a brazier, used to heat the oil (πρόπυρον, propyron, "pre-heater"); and the nozzle, which was covered in bronze and mounted on a swivel (στρεπτόν, strepton). The brazier, burning a match of linen or flax that produced intense heat and the characteristic thick smoke, was used to heat oil and the other ingredients in an airtight tank above it, a process that also helped to dissolve the resins into a fluid mixture. The substance was pressurized by the heat and the use of a force pump. After it had reached the proper pressure, a valve connecting the tank with the swivel was opened and the mixture was discharged from its end, being ignited at its mouth by a flame. The intense heat of the flame made necessary the presence of heat shields made of iron (βουκόλια, boukolia), which are attested in the fleet inventories.
The process of operating Haldon and Byrne's design was fraught with danger, as the mounting pressure could easily make the heated oil tank explode, a flaw which was not recorded as a problem with the historical fire weapon. In the experiments conducted by Haldon in 2002 for the episode "Fireship" of the television series Machines Times Forgot, even modern welding techniques failed to secure adequate insulation of the bronze tank under pressure. This led to the relocation of the pressure pump between the tank and the nozzle. The full-scale device built on this basis established the effectiveness of the mechanism's design, even with the simple materials and techniques available to the Byzantines. The experiment used crude oil mixed with wood resins, and achieved a flame temperature of over and an effective range of up to 15m (49feet).[14]
The portable cheirosiphōn ("hand-siphōn"), the earliest analogue to a modern flamethrower, is extensively attested in the military documents of the 10th century, and recommended for use in both sea and land. They first appear in the Tactica of emperor Leo VI the Wise, who claims to have invented them. Subsequent authors continued to refer to the cheirosiphōnes, especially for use against siege towers; Nikephoros II Phokas also advises their use in field armies, with the aim of disrupting the enemy formation. Although both Leo VI and Nikephoros Phokas claim that the substance used in the cheirosiphōnes was the same as in the static devices used on ships, Haldon and Byrne consider that the former were manifestly different from their larger cousins, and theorize that the device was fundamentally different, "a simple syringe [that] squirted both liquid fire (presumably unignited) and noxious juices to repel enemy troops." The illustrations of Hero's Poliorcetica show the cheirosiphōn also throwing the ignited substance.
In its earliest form, Greek fire was hurled onto enemy forces by firing a burning cloth-wrapped ball, perhaps containing a flask, using a form of light catapult, most probably a seaborne variant of the Roman light catapult or onager. These were capable of hurling loads of around 6to a distance of 350-.
Although the destructiveness of Greek fire is indisputable, it did not make the Byzantine navy invincible. It was not, in the words of naval historian John Pryor, a "ship-killer" comparable to the naval ram, which, by then, had fallen out of use. While Greek fire remained a potent weapon, its limitations were significant when compared to more traditional forms of artillery: in its siphōn-deployed version, it had a limited range, and it could be used safely only in a calm sea and with favorable wind conditions.
The Muslim navies eventually adapted themselves to it by staying out of its effective range and devising methods of protection such as felt or hides soaked in vinegar.
Nevertheless, it was still a decisive weapon in many battles. John Julius Norwich wrote: "It is impossible to exaggerate the importance of Greek fire in Byzantine history."[15]