In mathematical physics, the Berezin integral, named after Felix Berezin, (also known as Grassmann integral, after Hermann Grassmann), is a way to define integration for functions of Grassmann variables (elements of the exterior algebra). It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions.
Let
Λn
\theta1,...,\thetan
\theta1,...,\thetan
The Berezin integral over the sole Grassmann variable
\theta=\theta1
\int[af(\theta)+bg(\theta)]d\theta=a\intf(\theta)d\theta+b\intg(\theta)d\theta, a,b\in\C
where we define
\int\thetad\theta=1, \intd\theta=0
so that :
\int
\partial{\partial\theta}f(\theta)d\theta | |
= |
0.
These properties define the integral uniquely and imply
\int(a\theta+b)d\theta=a, a,b\in\C.
Take note that
f(\theta)=a\theta+b
\theta
f(\theta)
The Berezin integral on
Λn
\int | |
Λn |
⋅ rm{d}\theta
\int | |
Λn |
\thetan … \theta1d\theta=1,
\int | |
Λn |
\partialf | |
\partial\thetai |
d\theta=0, i=1,...,n
for any
f\inΛn,
\partial/\partial\thetai
Notice that different conventions exist in the literature: Some authors define instead[1]
\int | |
Λn |
\theta1 … \thetand\theta:=1.
The formula
\int | |
Λn |
f(\theta)
d\theta=\int | |
Λ1 |
\left( …
\int | |
Λ1 |
\left(\int | |
Λ1 |
f(\theta)d\theta1\right)d\theta2 … \right)d\thetan
expresses the Fubini law. On the right-hand side, the interior integral of a monomial
f=g(\theta')\theta1
g(\theta'),
\theta'=\left(\theta2,\ldots,\thetan\right)
f=g(\theta')
\theta2
Let
\thetai=\thetai\left(\xi1,\ldots,\xin\right), i=1,\ldots,n,
\xi1,\ldots,\xin
D=\left\{
\partial\thetai | |
\partial\xij |
, i,j=1,\ldots,n\right\},
where
\partial/\partial\xij
\partial(\theta1\theta2)/\partial\theta2=\theta1, \partial(\theta1\theta2)/\partial\theta1=-\theta2
\intf(\theta)d\theta=\intf(\theta(\xi))(\detD)-1d\xi.
Consider now the algebra
Λm\mid
x=x1,\ldots,xm
\theta1,\ldots,\thetan
(m|n)
f=f(x,\theta)\inΛm\mid
f=f(x,\theta)\inΛm\mid
x
X\subset\Rm
Λn.
K\subset\Rm.
\int | |
Λm\mid |
f(x,\theta)d\theta
dx=\int | |
\Rm |
dx
\int | |
Λn |
f(x,\theta)d\theta.
Let a coordinate transformation be given by
xi=xi(y,\xi), i=1,\ldots,m; \thetaj=\thetaj(y,\xi),j=1,\ldots,n,
xi
\thetaj
\xi
y.
J= | \partial(x,\theta) |
\partial(y,\xi) |
=\begin{pmatrix}A&B\ C&D\end{pmatrix},
where each even derivative
\partial/\partialyj
Λm\mid
A=\partialx/\partialy
D=\partial\theta/\partial\xi
B=\partialx/\partial\xi, C=\partial\theta/\partialy
\partial/\partial\xij
When the function
D
Λm\mid,
J= | \partial(x,\theta) |
\partial(y,\xi) |
=\begin{pmatrix}A&B\ C&D\end{pmatrix} ={\begin{pmatrix}I&B\\0&D\end{pmatrix}}{\begin{pmatrix}A-BD-1C&0\\D-1C&I\end{pmatrix}}
So we have the Berezinian (or superdeterminant) of the matrix
J
\operatorname{Ber}J=\det\left(A-BD-1C\right)(\detD)-1
Suppose that the real functions
xi=xi(y,0)
F:Y\toX
X,Y
\Rm
\xi\mapsto\theta=\theta(y,\xi)
y\inY.
\begin{align} &
\int | |
Λm\mid |
f(x,\theta)d\thetadx=
\int | |
Λm\mid |
f(x(y,\xi),\theta(y,\xi))\varepsilon\operatorname{Ber}Jd\xidy\\[6pt] ={}
&\int | |
Λm\mid |
f(x(y,\xi),\theta(y,\xi))\varepsilon
\det\left(A-BD-1C\right) | |
\detD |
d\xidy, \end{align}
where
\varepsilon=sgn(\det\partialx(y,0)/\partialy
F.
f(x(y,\xi),\theta(y,\xi))
xi(y,\xi)
\xi.
xi(y,\xi)=xi(y,0)+\deltai,
\deltai,i=1,\ldots,m
Λm\mid
f(x(y,\xi),\theta)=f(x(y,0),\theta)
+\sum | ||||
|
(x(y,0),\theta)\deltai+
1 | |
2 |
\sumi,j
\partial2f | |
\partialxi\partialxj |
(x(y,0),\theta)\deltai\deltaj+ … ,
where the Taylor series is finite.
The following formulas for Gaussian integrals are used often in the path integral formulation of quantum field theory:
\int\exp\left[-\thetaTAη\right]d\thetadη=\detA
with
A
n x n
\int\exp\left[-\tfrac{1}{2}\thetaTM\theta\right]d\theta=\begin{cases}PfM&neven\ 0&nodd\end{cases}
with
M
n x n
PfM
M
(PfM)2=\detM
In the above formulas the notation
d\theta=d\theta1 … d\thetan
\int\exp\left[\thetaTAη+\thetaTJ+KTη\right]dη1d\theta1...dηnd\thetan=\detA\exp[-KTA-1J]
with
A
n x n
Berezin integral was probably first presented by David John Candlin in 1956.[3] Later it was independently discovered by Felix Berezin in 1966.[4]
Unfortunately Candlin's article failed to attract notice, and has been buried in oblivion. Berezin's work came to be widely known, and has almost been cited universally, becoming an indispensable tool to treat quantum field theory of fermions by functional integral.
Other authors contributed to these developments, including the physicists Khalatnikov[5] (although his paper contains mistakes), Matthews and Salam,[6] and Martin.[7]