Germyl Explained

Germyl, trihydridogermanate(1-), trihydrogermanide, trihydridogermyl or according to IUPAC Red Book: germanide[1] is an anion containing germanium bounded with three hydrogens, with formula . Germyl is the IUPAC term for the – group. For less electropositive elements the bond can be considered covalent rather than ionic as "germanide" indicates. Germanide is the base for germane when it loses a proton.

The first germyl compound to be discovered was sodium germyl. Germane was reacted with sodium dissolved in liquid ammonia to produce sodium germyl.[2] [3] Other alkali metal germyl compounds are known. There are also numerous transition metal complexes that contain germyl as a ligand.

Formation

Alkali metal germyl compounds have been made by reacting germane with the alkali metal dissolved in liquid ammonia, or other non-reactive solvent.

Transition metal complexes cam be made by using lithium aluminium hydride to reduce a trichlorogermyl complex (−), which in turn can be made from the transition metal complex chloride and .[4]

Salt elimination can be used in a reaction with monochlorogermane and a sodium salt of a transition metal anion:

.

In the gas phase, the germyl anion can be made from germane by capturing an electron with more than 8 eV of energy:

The germyl radical can be produced and immobilised in molecular form by exposing germane to vacuum ultraviolet light in a solid argon matrix. On heating, digermane is formed:

[5]

Properties

Germyl compounds react with water, so water cannot be used as a solvent. Liquids that have been used as solvents include liquid ammonia, ethyl amine, diglyme, or hexamethylphosphoramide. The choice of solvent depends on the temperature desired, whether alkali metals are going to be dissolved, whether the solvent needs to be distilled, and also if it reacts with the solute.[6]

The bond between the metal ion and the germyl ion may be purely ionic, but may also be bonded via two bridging hydrogen atoms.[7]

The energy to rip a hydrogen atom off germane to make the neutral radical is 82kcal/mol2kcal/mol. GeH4 → GeH3 + H.[8] Electron affinity for the radical is 1.6 eV: GeH3 + e → GeH3.

Gas phase acidity of germane is ΔG is 350.8kcal/mol1.3kcal/mol; ΔH is 358.9kcal/mol for .

Both the anion and radical have C3v symmetry, and are shaped as a triangular pyramid with germanium at the top, and three hydrogen atoms at the bottom. In the radical, the H-Ge-H angle is 110°. In the anion the H-Ge-H angle is about 93°.

Reactions

Germyl compounds gradually decompose at room temperature by releasing hydrogen and forming a metal germide.

Germyl compounds react with alkyl halides to substitute the germyl − group for the halogen. With aromatic halide compounds, dihalomethanes, or neopentyl haldes they replace the halogen with hydrogen. Organogermanium compounds that can be produced include methyl germane, dimethyl germane, digermyl methane, digermyl ethane, digermyl propane.

The germyl ion reacts with water to yield germane:

Sodium germyl reacts with oxygen to form an orthogermanate:

This loses water at room temperature.

K[η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Mn(CO)<sub>2</sub>GeH<sub>3</sub>] reacts with acid to yield [η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Mn(CO)<sub>2</sub>]2Ge which has a Mn=Ge=Mn linkage in it.[9]

List

formulanamemwsystemspace groupunit cellvolumedensitycommentsref
[10]
Sodium Trihydrogermanidewhite
P(GeH3)3[11]
KGeH3cubica=7.2352.003NaCl structure[12] [13]
K([18]crown-6)(thf)GeH3451.13monoclinicPca=13.8587 b=9.9670 c=16.9439 β=107.206 Z=42235.71.34colourless
K([15]crown-5)2GeH3555.23tetrahedralIa=12.685 c=16.985 Z=42733.01.349colourless
K([12]crown-4)2GeH3467.13monoclinicC2/ca=40.7694 b=6.623 c=29.6746 β=97.450 Z=169144.91.357colourless
K[V(CO)<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)GeH<sub>3</sub>][14]
[PPh<sub>4</sub>][V(CO)<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)GeH<sub>3</sub>]orthorhombicPcaba=17.47 b=15.68 c=21.49 Z=858861.39yellow[15]
K[Cr(CO)<sub>5</sub>GeH<sub>3</sub>][16]
[PPh<sub>4</sub>][Cr(CO)<sub>5</sub>GeH<sub>3</sub>]monoclinicC2/ca=22.301 b=6.989 c=18.002 β=? Z=42788.51.45yellow
Mn(GeH3)(CO)5
Mn(GeH3)(CO)2(PPh(OEt)2)3pale yellow
Mn(GeH3)(CO)3(PPh(OEt)2)2610.96triclinicPa=10.118 b=11.060 c=13.009 α=97.859 β=98.612 γ=92.856 Z=21422.31.427pale yellow
Mn(GeH3)(CO)2(P(OEt)3)3pale yellow
Mn(GeH3)(CO)3(P(OEt)3)2pale yellow
K[η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Mn(CO)<sub>2</sub>GeH<sub>3</sub>]
[(CH<sub>3</sub>)<sub>4</sub>N][η-CH<sub>3</sub>C<sub>5</sub>H<sub>4</sub>Mn(CO)<sub>2</sub>GeH<sub>3</sub>]triclinicPa=6.948 b=9.658 c=11.784 α=89.57 β=77.37 γ=88.05 Z=27721.45[17]
[(CH<sub>3</sub>)<sub>4</sub>N][η-CH<sub>3</sub>C<sub>5</sub>H<sub>4</sub>Mn(CO)<sub>2</sub>GeH<sub>3</sub>]triclinicPa=6.958 b=9.658 c=11.784 α=89.57 β=77.37 γ=88.05 Z=27721.46[18]
(GeH3)2Fe(CO)4digermyltetracarbonylironmp 71°C colourless[19]
GeH3(H)Fe(CO)4monogermylhydridotetracarbonylironmp −30°C colourless
GeH3Fe(C5H5)(CO)2Germyl(cyclopentadienyl)dicarbonylironmp 81°C yellow
Fe(CO)4(GeH2GeH3)(GeH3)[20]
Fe(CO)4(GeH3)(GeMe3)[21]
2-Fe-Ge-Fe-Ge- ring[22]
K[Co<sub>2</sub>(CO)<sub>7</sub>GeH<sub>3</sub>]
[PPh<sub>4</sub>]Co2(CO)7GeH3]
K[Co-(CO)(η<sup>5</sup>C<sub>6</sub>H<sub>5</sub>)GeH<sub>3</sub>]
[PPh<sub>4</sub>][Co-(CO)(η<sup>5</sup>C<sub>6</sub>H<sub>5</sub>)GeH<sub>3</sub>]
K[Co-(CO)(η<sup>5</sup>C<sub>6</sub>(CH<sub>3</sub>)<sub>5</sub>)GeH<sub>3</sub>]
[PPh<sub>4</sub>][Co-(CO)(η<sup>5</sup>C<sub>6</sub>(CH<sub>3</sub>)<sub>5</sub>)GeH<sub>3</sub>]
K[(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)-Mn(CO)<sub>2</sub>GeH<sub>3</sub>]
K[Ni(CO)<sub>3</sub>GeH<sub>3</sub>]
[PPh<sub>4</sub>][Ni(CO)<sub>3</sub>GeH<sub>3</sub>]monoclinicC2a=16.855 b=7.098 c=15.189 β=134.71 Z=21291.51.43orange yellow
K[Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)GeH<sub>3</sub>]
[PPh<sub>4</sub>][Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)GeH<sub>3</sub>]monoclinicP21/na=10.37 b=22.37 c=16.95 β=96.23 Z=42910.61.74orange yellow
As(GeH3)3
Rb([18]crown-6)(thf)GeH3497.50monoclinicCca=13.8336 b=9.9878 c=16.9893 β=107.417 Z=42239.71.475colourless
RbGeH3a=7.5182.518
K[Nb(CO)<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)GeH<sub>3</sub>]
[PPh<sub>4</sub>][Nb(CO)<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)GeH<sub>3</sub>]
K[Mo(CO)<sub>5</sub>GeH<sub>3</sub>]
[PPh<sub>4</sub>][Mo(CO)<sub>5</sub>GeH<sub>3</sub>]monoclinicC2/ca=22.25 b=7.021 c=18.545 β=96.14 Z=428811.5yellow
Ru(GeH3)(η5-C5H5)(PPh3)P(OMe)3628.12monoclinicP21/ca=17.932 b=10.067 c=16.375, β=114.508° Z=42689.61.551yellow[23]
Ru(GeH3)(η5-C5H5)(PPh3)P(OEt)3yellow
Ru(GeH3)(η5-C5H5)(PPh3)PPh(OEt)2yellow
Ru(GeH3)(η5-C9H7)(PPh3)P(OMe)3yellow
Ru(GeH3)(η5-C9H7)(PPh3)P(OEt)3yellow
Ru(GeH3)(η5-C9H7)(PPh3)PPh(OEt)2yellow
Ru(GeH3)(Tp)(PPh3))P(OEt)3yellow
Ru(GeH3)(Tp)(PPh3)PPh(OEt)2yellow
cis-[Ru(dppe)<sub>2</sub>(GeH<sub>3</sub>)H]•C6H61014.4triclinicPa 12.3464 b 13.2412 c 16.2053, α 90.055° β 98.868° γ 116.164° Z=22342.31.438[24]
trans-[Ru(dppe)<sub>2</sub>(GeH<sub>3</sub>)H]
cis-[Ru(depe)<sub>2</sub>(GeH<sub>3</sub>)H]
trans-[Ru(depe)<sub>2</sub>(GeH<sub>3</sub>)H]
cis-[Ru(dmpe)<sub>2</sub>(GeH<sub>3</sub>)H]
trans-[Ru(dmpe)<sub>2</sub>(GeH<sub>3</sub>)H]
cis-[Ru(DuPhos)<sub>2</sub>(GeH<sub>3</sub>)H]790.38orthorhombicP212121a 10.1222 b 18.4327 c 19.425 Z=43624.41.448
Ru(GeH3)(Cp′)L Cp′=η5-C5Me5 L=1,2-[bis(diphenyl) phosphanyloxy]-1,2-diphenylethane[25]
Ru(GeH3)(Cp′)L Cp′=η5-C9H7 L=1,2-[bis(diphenyl) phosphanyloxy]-1,2-diphenylethane
Sb(GeH3)3trigermylstibine[26]
Cs([18]crown-6)2GeH3734.12tetrahedralP4/na=13.2513 c=19.0577 Z=43346.51.457colourless
CsGeH3orthorhombica=5.1675 b=14.435 c=5.96643.111
K[W(CO)<sub>5</sub>GeH<sub>3</sub>]
[PPh<sub>4</sub>][W(CO)<sub>5</sub>GeH<sub>3</sub>]monoclinicC2/ca=22.227 b=7.025 c=18.529 β=96.11 Z=42883.21.71yellow
GeH3Re(CO)5Germylpentacarbonylrheniumcolourless mp 53-54°C[27]
GeH2[Re(CO)<sub>5</sub>]2bis(pentacarbonylrhenium)germane
Re(GeH3)(CO)2(PPh(OEt)2)3white
Re(GeH3)(CO)3(PPh(OEt)2)2white
Re(GeH3)(CO)2(P(OEt)3)3white
Re(GeH3)(CO)3(P(OEt)3)2white
K[Re(CO)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)GeH<sub>3</sub>]
[PPh<sub>4</sub>][Re(CO)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)GeH<sub>3</sub>]
Os(GeH3)(Tp)(PPh3)P(OMe)3 Tp = tris(pyrazolyl)boratewhite

Related

Germylidyne with formula ≡GeH has a triple bond to the metal atom.[28]

Germylidene with base formula = has a double bond to the central metal.[29]

Notes and References

  1. Book: IUPAC. Red Book. 298. 2005.
  2. Web site: Dreyfuss . R. M. . Jolly . W. L. . The Reaction of Potassium Germyl with Organic Halides . en . 1 June 1971.
  3. Kraus . Charles A. . Carney . E. Seaton . Compounds of Germanium and Hydrogen: Some of their Reactions and Derivatives. I. Preparation of Monogermane. II. Sodium Trihydrogermanides . Journal of the American Chemical Society . April 1934 . 56 . 4 . 765–768 . 10.1021/ja01319a002.
  4. Albertin. Gabriele. Antoniutti. Stefano. Castro. Jesús. January 2012. Synthesis and reactivity of germyl complexes of manganese and rhenium. Journal of Organometallic Chemistry. en. 696. 26. 4191–4201. 10.1016/j.jorganchem.2011.09.014.
  5. Smith . George R. . Guillory . William A. . Products of the Vacuum-Ultraviolet Photolysis of Germane Isolated in an Argon Matrix . The Journal of Chemical Physics . 15 February 1972 . 56 . 4 . 1423–1430 . 10.1063/1.1677383. 1972JChPh..56.1423S .
  6. Cradock . Stephen . Gibbon . G. A. . Van Dyke . Charles H. . Germyl chemistry. V. Hexamethylphosphoramide as a solvent for the preparation and reaction of alkali metal derivatives of silane and germane . Inorganic Chemistry . September 1967 . 6 . 9 . 1751–1752 . 10.1021/ic50055a034.
  7. Teng. Weijie. Allis. Damian G.. Ruhlandt-Senge. Karin. 2007-01-22. Synthetic, Structural, and Theoretical Investigations of Alkali Metal Germanium Hydrides—Contact Molecules and Separated Ions. Chemistry – A European Journal. en. 13. 4. 1309–1319. 10.1002/chem.200601073. 17133638.
  8. Riveros . José M. . Probing the gas-phase ion chemistry of simple Ge systems . International Journal of Mass Spectrometry . December 2002 . 221 . 3 . 177–190 . 10.1016/s1387-3806(02)01025-4. 2002IJMSp.221..177R .
  9. Melzer. Detlef. Weiss. Erwin. February 1984. GeMn-mehrfachbindungen in [(η5-C5H5)Mn(CO)]2Ge und [(η5-C5H5)Mn(CO)2]3Ge. [(η-C5H5)2V]2GeH2, eine metallverbindung mit einer GeH2-brücke]. Journal of Organometallic Chemistry. de. 263. 1. 67–73. 10.1016/0022-328X(84)85011-1.
  10. Amberger. E.. Boeters. H. D.. 1963-09-21. Darstellung von LiGeH3 · 2NH3 und KSbH2. Angewandte Chemie. de. 75. 18. 860. 10.1002/ange.19630751819. 1963AngCh..75..860A.
  11. Chizmeshya. A. V. G.. Ritter. C.. Tolle. J.. Cook. C.. Menéndez. J.. Kouvetakis. J.. 2006-12-01. Fundamental Studies of P(GeH 3) 3, As(GeH 3) 3, and Sb(GeH 3) 3 : Practical n -Dopants for New Group IV Semiconductors. Chemistry of Materials. en. 18. 26. 6266–6277. 10.1021/cm061696j. 0897-4756.
  12. Teal. Gordon K.. Kraus. Charles A.. October 1950. Compounds of Germanium and Hydrogen. III. Monoalkylgermanes. IV. Potassium Germanyl. V. Electrolysis of Sodium Germanyl 1. Journal of the American Chemical Society. en. 72. 10. 4706–4709. 10.1021/ja01166a100. 0002-7863.
  13. Thirase. G.. Weiss. E.. Hennig. H. J.. Lechert. H.. October 1975. Präparative, röntgenographische und1 H-Breitlinienresonanzuntersuchungen an Germylalkaliverbindungen, GeH3 M. Zeitschrift für anorganische und allgemeine Chemie. de. 417. 3. 221–228. 10.1002/zaac.19754170306. 0044-2313.
  14. Pohlmann. Heinrich. Weiss. Erwin. August 1988. GeH3-substituierte Carbonylmetallate und Carbonyl(cyclopentadienyl)-metallate mit V, Nb, Cr, Mo, W, Re, Co und Ni Präparative und röntgenographische Untersuchungen. Chemische Berichte. de. 121. 8. 1427–1433. 10.1002/cber.19881210812.
  15. Holloway. Clive E.. Melnik. Milan. Germanium Heterometallic Compounds: Classification and Analysis of Crystallograpphic and Structural Data. January 2002. Main Group Metal Chemistry. 25. 6. 10.1515/MGMC.2002.25.6.331. 100597813. 2191-0219. free.
  16. Melzer. Detlef. Weiss. Erwin. July 1984. GeH3-Substituierte Carbonylmetallate von Cr, W, Mn und Co. Die Kristallstruktur von [PPh4]Cr(CO)5GeH3]]. Chemische Berichte. de. 117. 7. 2464–2468. 10.1002/cber.19841170717.
  17. Gäde. Wolfgang. Weiss. Erwin. July 1981. Carbonyl(cyclopentadienyl)mangan-Verbindungen mit Mn — GeH3- und Mn — GeCl3-Gruppen. Die Kristallstrukturen von [(CH3)4N][η-CH3C5H4Mn(CO)2GeH3] und η-CH3C5H4Mn(CO)2(GeCl3)2]. Chemische Berichte. de. 114. 7. 2399–2404. 10.1002/cber.19811140706.
  18. Gäde. Wolfgang. Weiss. Erwin. July 1981. Carbonyl(cyclopentadienyl)mangan-Verbindungen mit Mn — GeH3- und Mn — GeCl3-Gruppen. Die Kristallstrukturen von [(CH3)4N][η-CH3C5H4Mn(CO)2GeH3] und η-CH3C5H4Mn(CO)2(GeCl3)2]. Chemische Berichte. de. 114. 7. 2399–2404. 10.1002/cber.19811140706.
  19. Stobart. S. R.. 1972. Transition-metal carbonyl derivatives of the Germanes. Part III. Germyl(carbonyl)iron complexes. Journal of the Chemical Society, Dalton Transactions. en. 22. 2442–2447. 10.1039/dt9720002442. 0300-9246.
  20. BONNY. A. MACKAY. K. M.. SIN WONG. F.. 1985. Transition metal carbonyl derivatives of the germanes. XVI: Preparation and properties of the digermane-tetracarbonyliron compounds, [Fe(CO)4(GeH2GeH3)2] and [Fe(CO)4(GeH2GeH3)(GeH3)] with some observations on [Fe(CO)4(GeH3)2]]. Journal of Chemical Research. Synopses . 2 . 40–41. 0308-2342.
  21. Anema. Skelte G.. Audett (née Christie). Judy A.. Mackay. Kenneth M.. Nicholson. Brian K.. 1988. Transition-metal carbonyl derivatives of the germanes. Part 17. Tetracarbonylgermyl(trimethylgermyl)iron, [Fe(CO) 4 (GeH 3)(GeMe 3)], its conversion into [{Fe(CO) 4 (GeH 2)} 2 ], and hence to [Co 4 Fe 2 Ge 2 (CO) 21 ](characterised by X-ray crystallography)via[Co 4 Fe 2 Ge 2 (CO) 22 ]]. J. Chem. Soc., Dalton Trans.. en. 10. 2629–2634. 10.1039/DT9880002629. 0300-9246.
  22. Anema. Skelte G.. Audett (née Christie). Judy A.. Mackay. Kenneth M.. Nicholson. Brian K.. 1988. Transition-metal carbonyl derivatives of the germanes. Part 17. Tetracarbonylgermyl(trimethylgermyl)iron, [Fe(CO) 4 (GeH 3)(GeMe 3)], its conversion into [{Fe(CO) 4 (GeH 2)} 2 ], and hence to [Co 4 Fe 2 Ge 2 (CO) 21 ](characterised by X-ray crystallography)via[Co 4 Fe 2 Ge 2 (CO) 22 ]]. J. Chem. Soc., Dalton Trans.. en. 10. 2629–2634. 10.1039/DT9880002629. 0300-9246.
  23. Albertin. Gabriele. Antoniutti. Stefano. Castro. Jesús. Scapinello. Federica. February 2014. Preparation and reactivity of germyl complexes of ruthenium and osmium stabilised by cyclopentadienyl, indenyl and tris(pyrazolyl)borate fragments. Journal of Organometallic Chemistry. en. 751. 412–419. 10.1016/j.jorganchem.2013.06.028.
  24. Dickinson. David P.. Evans. Simon W.. Grellier. Mary. Kendall. Hannah. Perutz. Robin N.. Procacci. Barbara. Sabo-Etienne. Sylviane. Smart. Katharine A.. Whitwood. Adrian C.. 2019-02-11. Photochemical Oxidative Addition of Germane and Diphenylgermane to Ruthenium Dihydride Complexes. Organometallics. en. 38. 3. 626–637. 10.1021/acs.organomet.8b00770. 104464237 . 0276-7333.
  25. Álvarez-Pazos. Nuria. Bravo. Jorge. García-Fontán. Soledad. September 2019. Synthesis and reactivity of germyl complex of Ruthenium(II). Inorganica Chimica Acta. en. 495. 118959. 10.1016/j.ica.2019.118959. 196864226 .
  26. Ebsworth. E. A. V.. Rankin. D. W. H.. Sheldrick. G. M.. 1968. Preparation and properties of trigermyl-arsine and -stibine. Journal of the Chemical Society A: Inorganic, Physical, Theoretical. en. 2828–2830. 10.1039/j19680002828. 0022-4944.
  27. Mackay. K. M.. Stobart. S. R.. 1973. Transition-metal carbonyl derivatives of the germanes. Part IV. Germylpentacarbonylrhenium. Journal of the Chemical Society, Dalton Transactions. en. 2. 214–217. 10.1039/dt9730000214. 0300-9246.
  28. Wang. Xuefeng. Andrews. Lester. 2008-09-15. Infrared Spectra, Structure, and Bonding of the GeH 3 —CrH, HGe≡MoH 3, and HGe≡WH 3 Molecules in Solid Neon and Argon. Inorganic Chemistry. en. 47. 18. 8159–8166. 10.1021/ic800552s. 18698694. 0020-1669.
  29. Lee. Vladimir Ya.. Sakai. Ryo. Takanashi. Kazunori. Gapurenko. Olga A.. Minyaev. Ruslan M.. Gornitzka. Heinz. Sekiguchi. Akira. 2021-02-19. Titanium Germylidenes. Angewandte Chemie International Edition. en. 60. 8. 3951–3955. 10.1002/anie.202015704. 33289313. 227947452. 1433-7851.