The Gent hyperelastic material model is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value
Im
The strain energy density function for the Gent model is [1]
W=-\cfrac{\muJm}{2}ln\left(1-\cfrac{I1-3}{Jm}\right)
\mu
Jm=Im-3
In the limit where
Jm → infty
W=-\cfrac{\mu}{2x}ln\left[1-(I1-3)x\right]~;~~x:=\cfrac{1}{Jm}
ln\left[1-(I1-3)x\right]
x=0
x → 0
W=\cfrac{\mu}{2}(I1-3)
Several compressible versions of the Gent model have been designed. One such model has the form[2] (the below strain energy function yields a non zero hydrostatic stress at no deformation, refer[3] for compressible Gent models).
W=-\cfrac{\muJm}{2}ln\left(1-\cfrac{I1-3}{Jm}\right)+\cfrac{\kappa}{2}\left(\cfrac{J2-1}{2}-lnJ\right)4
J=\det(\boldsymbol{F})
\kappa
\boldsymbol{F}
We may alternatively express the Gent model in the form
W=C0ln\left(1-\cfrac{I1-3}{Jm}\right)
2\cfrac{\partialW}{\partialI1}(3)=\mu
\mu
I1=3(λi=λj=1)
\cfrac{\partialW}{\partialI1}=-\cfrac{C0}{Jm}
-\cfrac{2C0}{Jm}=\mu \implies C0=-\cfrac{\muJm}{2}
Jm\gg1
The Cauchy stress for the incompressible Gent model is given by
\boldsymbol{\sigma}=-p~\boldsymbol{I
For uniaxial extension in the
n1
λ1=λ,~λ2=λ3
λ1~λ2~λ3=1
2=1/λ | |
λ | |
3 |
I1=
2 | |
λ | |
3 |
=λ2+\cfrac{2}{{λ}}~.
\boldsymbol{B}=
2~n | |
λ | |
1 ⊗ n |
1+\cfrac{1}{λ}~(n2 ⊗ n2+n3 ⊗ n3)~.
\sigma11=-p+\cfrac{λ2\muJm}{Jm-I1+3}~;~~ \sigma22=-p+\cfrac{\muJm}{λ(Jm-I1+3)}=\sigma33~.
\sigma22=\sigma33=0
p=\cfrac{\muJm}{λ(Jm-I1+3)}~.
\sigma11=\left(λ2-\cfrac{1}{λ}\right)\left(\cfrac{\muJm}{Jm-I1+3}\right)~.
λ-1
T11=\sigma11/λ=\left(λ-\cfrac{1}{λ2}\right)\left(\cfrac{\muJm}{Jm-I1+3}\right)~.
For equibiaxial extension in the
n1
n2
λ1=λ2=λ
λ1~λ2~λ3=1
2 | |
λ | |
3=1/λ |
I1=
2 | |
λ | |
3 |
=2~λ2+\cfrac{1}{λ4}~.
\boldsymbol{B}=
2~n | |
λ | |
1 ⊗ n |
1+
2~n | |
λ | |
2 ⊗ n |
2+
4}~n | |
\cfrac{1}{λ | |
3 ⊗ n |
3~.
\sigma11=\left(λ2-\cfrac{1}{λ4}\right)\left(\cfrac{\muJm}{Jm-I1+3}\right)=\sigma22~.
λ-1
T11=\cfrac{\sigma11
Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction. For planar extension in the
n1
n3
λ1=λ,~λ3=1
λ1~λ2~λ3=1
λ2=1/λ
I1=
2 | |
λ | |
3 |
=λ2+\cfrac{1}{λ2}+1~.
\boldsymbol{B}=
2~n | |
λ | |
1 ⊗ n |
1+
2}~n | |
\cfrac{1}{λ | |
2 ⊗ n |
2+n3 ⊗ n3~.
\sigma11=\left(λ2-\cfrac{1}{λ2}\right)\left(\cfrac{\muJm}{Jm-I1+3}\right)~;~~\sigma22=0~;~~\sigma33=\left(1-\cfrac{1}{λ2}\right)\left(\cfrac{\muJm}{Jm-I1+3}\right)~.
λ-1
T11=\cfrac{\sigma11
The deformation gradient for a simple shear deformation has the form[4]
\boldsymbol{F}=\boldsymbol{1}+\gamma~e1 ⊗ e2
e1,e2
\gamma=λ-\cfrac{1}{λ}~;~~λ1=λ~;~~λ2=\cfrac{1}{λ}~;~~λ3=1
\boldsymbol{F}=\begin{bmatrix}1&\gamma&0\ 0&1&0\ 0&0&1\end{bmatrix}~;~~ \boldsymbol{B}=\boldsymbol{F} ⋅ \boldsymbol{F}T=\begin{bmatrix}1+\gamma2&\gamma&0\ \gamma&1&0\ 0&0&1\end{bmatrix}
I1=tr(\boldsymbol{B})=3+\gamma2
\boldsymbol{\sigma}=-p~\boldsymbol{1
\boldsymbol{\sigma}=\begin{bmatrix}-p+\cfrac{\muJm
2)}{J | |
(1+\gamma | |
m |
-\gamma2}&\cfrac{\muJm\gamma}{Jm-\gamma2}&0\ \cfrac{\muJm\gamma}{Jm-\gamma2}&-p+\cfrac{\muJm}{Jm-\gamma2}&0\ 0&0&-p+\cfrac{\muJm}{Jm-\gamma2} \end{bmatrix}