(A,ak{m})
i=0,...,d-1
i | |
\operatorname{length} | |
ak{m |
\supQ(\operatorname{length}A(A/Q)-e(Q))<infty
Q
e(Q)
Q
ak{m}
Q
x1,...,xd
Q
(x1,...,xd-1):xd=(x1,...,xd-1):Q.
ak{p}
\widehat{A}
ak{m}\widehat{A}
\dim\widehat{A}ak{p
\widehat{A}ak{p
The last condition implies that the localization
Aak{p}
ak{p}\neak{m}
A standard example is the local ring at the vertex of an affine cone over a smooth projective variety. Historically, the notion grew up out of the study of a Buchsbaum ring, a Noetherian local ring A in which
\operatorname{length}A(A/Q)-e(Q)
ak{m}
Q