Hydroxycarboxylic acid receptor 1 explained
Hydroxycarboxylic acid receptor 1 (HCA1), formerly known as G protein-coupled receptor 81 (GPR81), is a protein that in humans is encoded by the HCAR1 gene.[1] [2] HCA1, like the other hydroxycarboxylic acid receptors HCA2 and HCA3, is a G protein-coupled receptor (GPCR). The primary endogenous agonist of HCA1 is lactic acid (and its conjugate base, lactate).[3] [4] More recently, 3,5-dihydroxybenzoic acid has been reported to activate HCA1.[5]
Lactate was initially found to activate HCA1 on fat cells and thereby to inhibit these cells lipolysis i.e., break-down of their fats into free fatty acids and glycerol.[6] [7] Subsequent studies have found that in addition to fat cells, HCA1 is expressed on cells in the brain, skeletal muscle, lymphoid tissue, uterus, kidney, liver, and pancreas as well as on immune cells such as macrophages and antigen-presenting cells. In the brain, HCA1 acts to dampen neuron excitation and may also function to promote neurogenesis (the production of neurons from neural stem cells) and angiogenesis (the formation of new blood vessels from pre-existing blood vessels). The functions of HCA1 in non-fat and non-neural tissues have not been fully defined but in many cases appear to involve promoting the survival of cells, including various types of cancer cells.[8]
Further reading
- Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S . Identification of G protein-coupled receptor genes from the human genome sequence . FEBS Letters . 520 . 1–3 . 97–101 . June 2002 . 12044878 . 10.1016/S0014-5793(02)02775-8 . 7116392 . free .
- Mao M, Biery MC, Kobayashi SV, Ward T, Schimmack G, Burchard J, Schelter JM, Dai H, He YD, Linsley PS . T lymphocyte activation gene identification by coregulated expression on DNA microarrays . Genomics . 83 . 6 . 989–99 . June 2004 . 15177553 . 10.1016/j.ygeno.2003.12.019 .
- Madaan A, Nadeau-Vallée M, Rivera JC, Obari D, Hou X, Sierra EM, Girard S, Olson DM, Chemtob S . Lactate produced during labor modulates uterine inflammation via GPR81 (HCA1) . American Journal of Obstetrics and Gynecology . September 2016 . 216 . 1 . 60.e1–60.e17 . 27615440 . 10.1016/j.ajog.2016.09.072 . free .
Notes and References
- Web site: Entrez Gene: GPR81 G protein-coupled receptor 81.
- Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O'Dowd BF . Discovery and mapping of ten novel G protein-coupled receptor genes . Gene . 275 . 1 . 83–91 . September 2001 . 11574155 . 10.1016/S0378-1119(01)00651-5 .
- Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP . International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B) . Pharmacological Reviews . 63 . 2 . 269–90 . June 2011 . 21454438 . 10.1124/pr.110.003301 . free .
- Web site: S Offermanns, SL Colletti, AP IJzerman, TW Lovenberg, G Semple, A Wise, MG Waters . Hydroxycarboxylic acid receptors . IUPHAR/BPS Guide to Pharmacology . International Union of Basic and Clinical Pharmacology . 13 July 2018.
- Wagner W, Sobierajska K, Pułaski Ł, Stasiak A, Ciszewski WM . Whole grain metabolite 3,5-dihydroxybenzoic acid is a beneficial nutritional molecule with the feature of a double-edged sword in human health: a critical review and dietary considerations . Critical Reviews in Food Science and Nutrition . 1–19 . April 2023 . 37096487 . 10.1080/10408398.2023.2203762 . 258310985 .
- Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, Sutton SW, Li X, Yun SJ, Mirzadegan T, Mazur C, Kamme F, Lovenberg TW . Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81 . The Journal of Biological Chemistry . 284 . 5 . 2811–22 . January 2009 . 19047060 . 10.1074/jbc.M806409200 . free .
- Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R, Wright SD, Taggart AK, Waters MG . Role of GPR81 in lactate-mediated reduction of adipose lipolysis . Biochemical and Biophysical Research Communications . 377 . 3 . 987–91 . December 2008 . 18952058 . 10.1016/j.bbrc.2008.10.088 .
- Colucci AC, Tassinari ID, Loss ED, de Fraga LS . History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia . Neuroscience . 526 . 144–163 . June 2023 . 37391123 . 10.1016/j.neuroscience.2023.06.022 . 259279124 .