Fourth power explained

In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So:

n4 = n × n × n × n

Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares.

Some people refer to n4 as n “tesseracted”, “hypercubed”, “zenzizenzic”, “biquadrate” or “supercubed” instead of “to the power of 4”.

The sequence of fourth powers of integers (also known as biquadrates or tesseractic numbers) is:

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, ... .

Properties

The last digit of a fourth power in decimal can only be 0 (in fact 0000), 1, 5 (in fact 0625), or 6.

In hexadecimal the last nonzero digit of a fourth power is always 1.[1]

Every positive integer can be expressed as the sum of at most 19 fourth powers; every integer larger than 13792 can be expressed as the sum of at most 16 fourth powers (see Waring's problem).

Fermat knew that a fourth power cannot be the sum of two other fourth powers (the n = 4 case of Fermat's Last Theorem; see Fermat's right triangle theorem). Euler conjectured that a fourth power cannot be written as the sum of three fourth powers, but 200 years later, in 1986, this was disproven by Elkies with:

.

Elkies showed that there are infinitely many other counterexamples for exponent four, some of which are:[2]

(Allan MacLeod)

(D.J. Bernstein)

(D.J. Bernstein)

(D.J. Bernstein)

(D.J. Bernstein)

(Roger Frye, 1988)

(Allan MacLeod, 1998)

Equations containing a fourth power

Fourth-degree equations, which contain a fourth degree (but no higher) polynomial are, by the Abel–Ruffini theorem, the highest degree equations having a general solution using radicals.

See also

References

  1. An odd fourth power is the square of an odd square number. All odd squares are congruent to 1 modulo 8, and (8n+1)2 = 64n2 + 16n + 1 = 16(4n2 + 1) + 1, meaning that all fourth powers are congruent to 1 modulo 16. Even fourth powers (excluding zero) are equal to (2kn)4 = 16kn4 for some positive integer k and odd integer n, meaning that an even fourth power can be represented as an odd fourth power multiplied by a power of 16.
  2. Quoted in Web site: Meyrignac. Jean-Charles. Computing Minimal Equal Sums Of Like Powers: Best Known Solutions. 14 February 2001. 17 July 2017.