Fisheries and Marine Ecosystem Model Intercomparison Project explained

The Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) is a marine biology project to compare computer models of the impact of climate change on sea life. Founded in 2013[1] as part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP),[2] it was established to answer questions about the future of marine biodiversity, seafood supply, fisheries, and marine ecosystem functioning in the context of various climate change scenarios. It combines diverse marine ecosystem models from both the global and regional scale through a standardized protocol for ensemble modelling in an attempt to correct for any bias in the individual models that make up the ensemble.[3] Fish-MIP's goal is to use this ensemble modelling to project a more robust picture of the future state of fisheries and marine ecosystems under the impacts of climate change,[4] and ultimately to help inform fishing policy.

Background

Ensemble modelling

Ensemble modelling is combining the outputs of multiple models that are all working on the same question. This allows researchers to analyze the different vulnerabilities of each individual model, and weigh the impact of particular inputs. Aggregating all the outputs and then using the outputs with the highest frequency across the models minimizes the error in the projection.[5]

Fish-MIP

Ensemble modelling is generally difficult because of the variety of possible inputs and outputs, which makes it challenging to run different models on the same data and compare results. The Fish-MIP protocols standardize input variables, as well as the names of files and data stores. The inputs are collected from simplified fishing scenarios, models of the climate and how much greenhouse gas will be in the atmosphere. These standardized inputs and scenarios can then be used to drive multiple ecosystem models, and the outputs are then combined through an ensemble modelling approach. The Fish-MIP standardizing protocol allow for these diverse inputs to be collated, thus minimizing projection error.[6] [7] [8] [9]

Some of the models used:

Global

Regional

Use in studies

Although at an earlier stage than the Coupled Model Intercomparison Project, as of 2021 studies suggest that larger fish species and the tropics are most affected by climate change.[14]

External links

Notes and References

  1. Book: Cheung, William W. L.. Predicting Future Oceans : Sustainability of Ocean and Human Systems Amidst Global Environmental Change.. 2019. Elsevier. Yoshitaka Ota, Andrés. Cisneros-Montemayor. 978-0-12-817946-8. San Diego. 1114972202.
  2. Hempel. S.. Frieler. K.. Warszawski. L.. Schewe. J.. Piontek. F.. 2013-07-31. A trend-preserving bias correction  - the ISI-MIP approach. Earth System Dynamics. English. 4. 2. 219–236. 10.5194/esd-4-219-2013. 2013ESD.....4..219H. 2190-4979. free.
  3. Tittensor. Derek P.. Eddy. Tyler D.. Lotze. Heike K.. Galbraith. Eric D.. Cheung. William. Barange. Manuel. Blanchard. Julia L.. Bopp. Laurent. Bryndum-Buchholz. Andrea. Büchner. Matthias. Bulman. Catherine. 2018-04-13. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development. English. 11. 4. 1421–1442. 2018GMD....11.1421T. 10.5194/gmd-11-1421-2018. 1991-959X. free. 10261/165167. free.
  4. Bryndum-Buchholz. Andrea. Prentice. Faelan. Tittensor. Derek P.. Blanchard. Julia L.. Cheung. William W.L.. Christensen. Villy. Galbraith. Eric D.. Maury. Olivier. Lotze. Heike K.. 2020-01-01. Favaro. Brett. Differing marine animal biomass shifts under 21st century climate change between Canada's three oceans. FACETS. en. 5. 1. 105–122. 10.1139/facets-2019-0035. 216303864. 2371-1671. free.
  5. Book: Predictive Analytics and Data Mining. 2015. Elsevier. 978-0-12-801460-8. en. 10.1016/c2014-0-00329-2.
  6. Web site: Fisheries and Marine Ecosystem Model Intercomparison (Fish-MIP) Postdoctoral Scientist Euromarine Network. 2021-11-19. www.euromarinenetwork.eu.
  7. Tittensor. Derek P.. Novaglio. Camilla. Harrison. Cheryl S.. Heneghan. Ryan F.. Barrier. Nicolas. Bianchi. Daniele. Bopp. Laurent. Bryndum-Buchholz. Andrea. Britten. Gregory L.. Büchner. Matthias. Cheung. William W. L.. November 2021. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change. en. 11. 11. 973–981. 10.1038/s41558-021-01173-9. 34745348. 8556156. 2021NatCC..11..973T. 1758-6798.
  8. Web site: ISIMIP3b simulation round – Fisheries and Marine Ecosystems (global). 2021-11-19. protocol.isimip.org. en.
  9. Web site: ISIMIP3b simulation round – Fisheries and Marine Ecosystems (regional). 2021-11-19. protocol.isimip.org. en.
  10. Web site: Apecosm – Modelling open ocean pelagic ecosystems in the global ocean. 2021-11-19. en-US.
  11. Web site: BOATS – Integrated Earth System Dynamics. 2021-11-19. en-US.
  12. Audzijonyte. Asta. Pethybridge. Heidi. Porobic. Javier. Gorton. Rebecca. Kaplan. Isaac. Fulton. Elizabeth A.. October 2019. Poisot. Timothée. Atlantis : A spatially explicit end‐to‐end marine ecosystem model with dynamically integrated physics, ecology and socio‐economic modules. Methods in Ecology and Evolution. en. 10. 10. 1814–1819. 10.1111/2041-210X.13272. 199632117. 2041-210X. free.
  13. Web site: Osmose – Object-oriented Simulator of Marine Ecosystems. 2021-11-19. en-US.
  14. News: 2021-06-15. Compared with climate, modelling of ecosystems is at an early stage. The Economist. 2021-10-27. 0013-0613.
  15. Gómara. Iñigo. Rodríguez-Fonseca. Belén. Mohino. Elsa. Losada. Teresa. Polo. Irene. Coll. Marta. 2021-02-18. Skillful prediction of tropical Pacific fisheries provided by Atlantic Niños. bioRxiv. en. 2021.02.17.431587. 10.1101/2021.02.17.431587. 10261/230501 . 231981566. free.
  16. Pontavice. Hubert du. Gascuel. Didier. Reygondeau. Gabriel. Stock. Charles. Cheung. William W. L.. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Global Change Biology. 2021. 27. 11. 2608–2622. en. 10.1111/gcb.15576. 33660891. 2021GCBio..27.2608P. 232113515. 1365-2486.
  17. Bryndum‐Buchholz. Andrea. Tittensor. Derek P.. Blanchard. Julia L.. Cheung. William W. L.. Coll. Marta. Galbraith. Eric D.. Jennings. Simon. Maury. Olivier. Lotze. Heike K.. 2019. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biology. en. 25. 2. 459–472. 10.1111/gcb.14512. 30408274. 2019GCBio..25..459B. 53244170. 1365-2486. 10261/175086. free.
  18. Bryndum-Buchholz. A. Boyce. DG. Tittensor. DP. Christensen. V. Bianchi. D. Lotze. HK. 2020-08-27. Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Marine Ecology Progress Series. en. 648. 1–17. 10.3354/meps13438. 2020MEPS..648....1B. 225267165. 0171-8630. free.
  19. Boyce. Daniel G.. Lotze. Heike K.. Tittensor. Derek P.. Carozza. David A.. Worm. Boris. 2020-05-06. Future ocean biomass losses may widen socioeconomic equity gaps. Nature Communications. en. 11. 1. 2235. 10.1038/s41467-020-15708-9. 2041-1723. 7203146. 32376884. 2020NatCo..11.2235B.
  20. Lotze. Heike K.. Tittensor. Derek P.. Bryndum-Buchholz. Andrea. Eddy. Tyler D.. Cheung. William W. L.. Galbraith. Eric D.. Barange. Manuel. Barrier. Nicolas. Bianchi. Daniele. Blanchard. Julia L.. Bopp. Laurent. 2019-06-25. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences. en. 116. 26. 12907–12912. 10.1073/pnas.1900194116. 0027-8424. 6600926. 31186360. 2019PNAS..11612907L . free.