In statistics and econometrics, the first-difference (FD) estimator is an estimator used to address the problem of omitted variables with panel data. It is consistent under the assumptions of the fixed effects model. In certain situations it can be more efficient than the standard fixed effects (or "within") estimator, for example when the error terms follows a random walk.[1]
The estimator requires data on a dependent variable,
yit
xit
i=1,...,N
t=1,...,T
\Deltayit
\Deltaxit
The FD estimator avoids bias due to some unobserved, time-invariant variable
ci
yit=xit\beta+ci+uit,t=1,...T,
yit-1=xit-1\beta+ci+uit-1,t=2,...T.
\Deltayit=yit-yit-1=\Deltaxit\beta+\Deltauit,t=2,...T,
ci
The FD estimator
\hat{\beta}FD
x
u
\hat{\beta}FD=(\DeltaX'\DeltaX)-1\DeltaX'\Deltay=\beta+(\DeltaX'\DeltaX)-1\DeltaX'\Deltau
where
X,y,
u
\DeltaX'\DeltaX
rank[\DeltaX'\DeltaX]=k
k
Let
\DeltaXi=[\DeltaXi2,\DeltaXi3,...,\DeltaXiT]
\Deltaui=[\Deltaui2,\Deltaui3,...,\DeltauiT]
E[uit|xi1,xi2,..,xiT]=0
\widehatAvar(\hat{\beta}FD)=E[\DeltaXi'\Delta
-1 | |
X | |
i] |
E[\DeltaXi'\Deltaui\Deltaui'\DeltaXi]E[\DeltaXi'\Delta
-1 | |
X | |
i] |
Var(\Deltau|
2 | |
X)=\sigma | |
\Deltau |
\widehat{Avar
2 | |
\hat{\sigma} | |
u |
2 | |
\sigma | |
u |
2 | |
\hat{\sigma} | |
\Deltau |
=[n(T-1)-K]-1
T | |
\sum | |
t=2 |
\widehat{\Deltauit
\widehat{\Deltauit
To be unbiased, the fixed effects estimator (FE) requires strict exogeneity, defined as
E[uit|xi1,xi2,..,xiT]=0
The first difference estimator (FD) is also unbiased under this assumption.
If strict exogeneity is violated, but the weaker assumption
E[(uit-uit-1)(xit-xit-1)]=0
Note that this assumption is less restrictive than the assumption of strict exogeneity which is required for consistency using the FE estimator when
T
T → infty
The Hausman test can be used to test the assumptions underlying the consistency of the FE and FD estimators.[5]
For
T=2
Under the assumption of homoscedasticity and no serial correlation in
uit
uit
\Deltauit