Fejér kernel explained

In mathematics, the Fejér kernel is a summability kernel used to express the effect of Cesàro summation on Fourier series. It is a non-negative kernel, giving rise to an approximate identity. It is named after the Hungarian mathematician Lipót Fejér (1880 - 1959).

Definition

The Fejér kernel has many equivalent definitions. We outline three such definitions below:

1) The traditional definition expresses the Fejér kernel

Fn(x)

in terms of the Dirichlet kernel:

Fn(x)=

1
n
n-1
\sum
k=0

Dk(x)

where

Dk(x)=\sum

k
s=-k

{\rme}isx

is the kth order Dirichlet kernel.

2) The Fejér kernel

Fn(x)

may also be written in a closed form expression as follows[1]

Fn(x)=

1\left(
n
\sin(
nx
2
)
\sin(
x
2
)

\right)2=

1\left(
n
1-\cos(nx)
1-\cos(x)

\right)

This closed form expression may be derived from the definitions used above. The proof of this result goes as follows.

First, we use the fact that the Dirichlet kernel may be written as:[2]

D
k(x)=
\sin((k +1)x)
2
\sinx
2
Hence, using the definition of the Fejér kernel above we get:

F_n(x) = \frac \sum_^D_k(x) = \frac \sum_^ \frac = \frac \frac\sum_^ \sin((k+\frac)x) = \frac \frac\sum_^ [\sin((k +\frac{1}{2})x) \cdot \sin(\frac{x}{2})]

Using the trigonometric identity:

\sin(\alpha)\sin(\beta)=1
2

(\cos(\alpha-\beta)-\cos(\alpha+\beta))

F_n(x) =\frac \frac\sum_^ [\sin((k +\frac{1}{2})x) \cdot \sin(\frac{x}{2})] = \frac \frac\sum_^ [\cos(kx)-\cos((k+1)x)] Hence it follows that:

F_n(x) = \frac \frac\frac2=\frac \frac\sin^2 \left(\frac2 \right) =\frac \left(\frac \right)^2 3) The Fejér kernel can also be expressed as:

Fn(x)=\sum\left(1-

|k|
n

\right)eikx

Properties

The Fejér kernel is a positive summability kernel. An important property of the Fejér kernel is

Fn(x)\ge0

with average value of

1

.

Convolution

The convolution Fn is positive: for

f\ge0

of period

2\pi

it satisfies

0\le

(f*F
n)(x)=1
2\pi
\pi
\int
-\pi

f(y)Fn(x-y)dy.

Since

f*Dn=Sn(f)=\sum|j|\le

ijx
\widehat{f}
je
, we have
f*F
n=1
n
n-1
\sum
k=0

Sk(f)

, which is Cesàro summation of Fourier series.

By Young's convolution inequality,

\|Fn*f

\|
Lp([-\pi,\pi])

\le

\|f\|
Lp([-\pi,\pi])

forevery1\lep\leinftyforf\inLp.

Additionally, if

f\inL1([-\pi,\pi])

, then

f*Fnf

a.e.Since

[-\pi,\pi]

is finite,

L1([-\pi,\pi])\supsetL2([-\pi,\pi])\supset\supsetLinfty([-\pi,\pi])

, so the result holds for other

Lp

spaces,

p\ge1

as well.

If

f

is continuous, then the convergence is uniform, yielding a proof of the Weierstrass theorem.

f,g\inL1

with

\hat{f}=\hat{g}

, then

f=g

a.e. This follows from writing

f*Fn=\sum|j|\le\left(1-

|j|
n
ijt
\right)\hat{f}
je
, which depends only on the Fourier coefficients.

\limn\toinftySn(f)

exists a.e., then

\limn\toinftyFn(f)=f

a.e., since Cesàro means

Fn*f

converge to the original sequence limit if it exists.

Applications

The Fejér kernel is used in signal processing and Fourier analysis.

See also

References

  1. Book: Hoffman, Kenneth . Banach Spaces of Analytic Functions . Dover . 1988 . 0-486-45874-1 . 17.
  2. Book: Konigsberger, Konrad . Analysis 1 . Springer . 6th . 322 . German.