FLEUR explained

FLEUR
Developer:The FLEUR team
Ver Layout:simple
Latest Release Version:MaX-R7.1
Programming Language:Fortran
Operating System:Linux
License:MIT License

The FLEUR code (also Fleur or fleur) is an open-source scientific software package for the simulation of material properties of crystalline solids, thin films, and surfaces. It implements Kohn-Sham density functional theory (DFT) in terms of the all-electron full-potential linearized augmented-plane-wave method. With this, it is a realization of one of the most precise DFT methodologies.[1] The code has the common features of a modern DFT simulation package. In the past, major applications have been in the field of magnetism, spintronics, quantum materials, e.g. in ultrathin films,[2] complex magnetism like in spin spirals or magnetic Skyrmion lattices,[3] and in spin-orbit related physics, e.g. in graphene[4] and topological insulators.[5]

Simulation model

The physical model used in Fleur simulations is based on the (F)LAPW(+LO) method, but it is also possible to make use of an APW+lo description. The calculations employ the scalar-relativistic approximation for the kinetic energy operator.[6] [7] Spin-orbit coupling can optionally be included.[8] It is possible to describe noncollinear magnetic structures periodic in the unit cell.[9] The description of spin spirals with deviating periodicity is based on the generalized Bloch theorem.[10] The code offers native support for the description of three-dimensional periodic structures, i.e., bulk crystals, as well as two-dimensional periodic structures like thin films and surfaces.[11] For the description of the exchange-correlation functional different parametrizations for the local density approximation, several generalized-gradient approximations, Hybrid functionals,[12] and partial support for the libXC library are implemented. It is also possible to make use of a DFT+U description.[13]

Features

The Fleur code can be used to directly calculate many different material properties. Among these are:

For the calculation of optical properties Fleur can be combined with the Spex code to perform calculations employing the GW approximation to many-body perturbation theory.[17] Together with the Wannier90 library it is also possible to extract the Kohn-Sham eigenfunctions in terms of Wannier functions.[18]

See also

External links

Notes and References

  1. Lejaeghere . K. . Bihlmayer . G. . Bjorkman . T. . Blaha . P. . Blugel . S. . Blum . V. . Caliste . D. . Castelli . I. E. . Clark . S. J. . Dal Corso . A. . de Gironcoli . S. . Deutsch . T. . Dewhurst . J. K. . Di Marco . I. . Draxl . C. . Dułak . M. . Eriksson . O. . Flores-Livas . J. A. . Garrity . K. F. . Genovese . L. . Giannozzi . P. . Giantomassi . M. . Goedecker . S. . Gonze . X. . Granas . O. . Gross . E. K. U. . Gulans . A. . Gygi . F. . Hamann . D. R. . Hasnip . P. J. . Holzwarth . N. A. W. . Iuşan . D. . Jochym . D. B. . Jollet . F. . Jones . D. . Kresse . G. . Koepernik . K. . Kucukbenli . E. . Kvashnin . Y. O. . Locht . I. L. M. . Lubeck . S. . Marsman . M. . Marzari . N. . Nitzsche . U. . Nordstrom . L. . Ozaki . T. . Paulatto . L. . Pickard . C. J. . Poelmans . W. . Probert . M. I. J. . Refson . K. . Richter . M. . Rignanese . G.-M. . Saha . S. . Scheffler . M. . Schlipf . M. . Schwarz . K. . Sharma . S. . Tavazza . F. . Thunstrom . P. . Tkatchenko . A. . Torrent . M. . Vanderbilt . D. . van Setten . M. J. . Van Speybroeck . V. . Wills . J. M. . Yates . J. R. . Zhang . G.-X. . Cottenier . S. . Reproducibility in density functional theory calculations of solids . Science . 25 March 2016 . 351 . 6280 . aad3000 . 10.1126/science.aad3000. 27013736 . 2016Sci...351.....L . 206642768 . 1854/LU-7191263 . free .
  2. Bode . M. . Heide . M. . von Bergmann . K. . Ferriani . P. . Heinze . S. . Bihlmayer . G. . Kubetzka . A. . Pietzsch . O. . Blügel . S. . Wiesendanger . R. . Chiral magnetic order at surfaces driven by inversion asymmetry . Nature . May 2007 . 447 . 7141 . 190–193 . 10.1038/nature05802. 17495922 . 2007Natur.447..190B . 4421433 .
  3. Heinze . Stefan . von Bergmann . Kirsten . Menzel . Matthias . Brede . Jens . Kubetzka . André . Wiesendanger . Roland . Bihlmayer . Gustav . Blügel . Stefan . Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions . Nature Physics . September 2011 . 7 . 9 . 713–718 . 10.1038/nphys2045. 2011NatPh...7..713H .
  4. Han . Wei . Kawakami . Roland K. . Gmitra . Martin . Fabian . Jaroslav . Graphene spintronics . Nature Nanotechnology . October 2014 . 9 . 10 . 794–807 . 10.1038/nnano.2014.214. 25286274 . 1503.02743 . 2014NatNa...9..794H . 3009069 .
  5. Eremeev . Sergey V. . Landolt . Gabriel . Menshchikova . Tatiana V. . Slomski . Bartosz . Koroteev . Yury M. . Aliev . Ziya S. . Babanly . Mahammad B. . Henk . Jürgen . Ernst . Arthur . Patthey . Luc . Eich . Andreas . Khajetoorians . Alexander Ako . Hagemeister . Julian . Pietzsch . Oswald . Wiebe . Jens . Wiesendanger . Roland . Echenique . Pedro M. . Tsirkin . Stepan S. . Amiraslanov . Imamaddin R. . Dil . J. Hugo . Chulkov . Evgueni V. . Atom-specific spin mapping and buried topological states in a homologous series of topological insulators . Nature Communications . January 2012 . 3 . 1 . 635 . 10.1038/ncomms1638. 22273673 . 2012NatCo...3..635E . 20501596 . free .
  6. Koelling . D D . Harmon . B N . A technique for relativistic spin-polarised calculations . Journal of Physics C: Solid State Physics . 28 August 1977 . 10 . 16 . 3107–3114 . 10.1088/0022-3719/10/16/019. 1977JPhC...10.3107K .
  7. Takeda . T. . The scalar relativistic approximation . Zeitschrift für Physik B . March 1978 . 32 . 1 . 43–48 . 10.1007/BF01322185. 1978ZPhyB..32...43T . 120097976 .
  8. MacDonald . A H . Picket . W E . Koelling . D D . A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions . Journal of Physics C: Solid State Physics . 20 May 1980 . 13 . 14 . 2675–2683 . 10.1088/0022-3719/13/14/009. 1980JPhC...13.2675M .
  9. Kurz . Ph. . Förster . F. . Nordström . L. . Bihlmayer . G. . Blügel . S. . Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method . Physical Review B . January 2004 . 69 . 2 . 024415 . 10.1103/PhysRevB.69.024415. 2004PhRvB..69b4415K .
  10. Heide . M. . Bihlmayer . G. . Blügel . S. . Describing Dzyaloshinskii–Moriya spirals from first principles . Physica B: Condensed Matter . October 2009 . 404 . 18 . 2678–2683 . 10.1016/j.physb.2009.06.070. 2009PhyB..404.2678H .
  11. Krakauer . H. . Posternak . M. . Freeman . A. J. . Linearized augmented plane-wave method for the electronic band structure of thin films . Physical Review B . 15 February 1979 . 19 . 4 . 1706–1719 . 10.1103/PhysRevB.19.1706. 1979PhRvB..19.1706K .
  12. Betzinger . Markus . Friedrich . Christoph . Blügel . Stefan . Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0 . Physical Review B . 24 May 2010 . 81 . 19 . 195117 . 10.1103/PhysRevB.81.195117. 1003.0524 . 2010PhRvB..81s5117B . 119271848 .
  13. Shick . A. B. . Liechtenstein . A. I. . Pickett . W. E. . Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis . Physical Review B . 15 October 1999 . 60 . 15 . 10763–10769 . 10.1103/PhysRevB.60.10763. cond-mat/9903439 . 1999PhRvB..6010763S . 119508105 .
  14. Weinert . M. . Wimmer . E. . Freeman . A. J. . Total-energy all-electron density functional method for bulk solids and surfaces . Physical Review B . 15 October 1982 . 26 . 8 . 4571–4578 . 10.1103/PhysRevB.26.4571. 1982PhRvB..26.4571W .
  15. Yu . Rici . Singh . D. . Krakauer . H. . All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method . Physical Review B . 15 March 1991 . 43 . 8 . 6411–6422 . 10.1103/PhysRevB.43.6411. 9998079 . 1991PhRvB..43.6411Y .
  16. Klüppelberg . Daniel A. . Betzinger . Markus . Blügel . Stefan . Atomic force calculations within the all-electron FLAPW method: Treatment of core states and discontinuities at the muffin-tin sphere boundary . Physical Review B . 5 January 2015 . 91 . 3 . 035105 . 10.1103/PhysRevB.91.035105. 2015PhRvB..91c5105K .
  17. Friedrich . Christoph . Blügel . Stefan . Schindlmayr . Arno . Efficient implementation of the G W approximation within the all-electron FLAPW method . Physical Review B . 3 March 2010 . 81 . 12 . 125102 . 10.1103/PhysRevB.81.125102. 1003.0316 . 2010PhRvB..81l5102F . 43385321 .
  18. Freimuth . F. . Mokrousov . Y. . Wortmann . D. . Heinze . S. . Blügel . S. . Maximally localized Wannier functions within the FLAPW formalism . Physical Review B . 17 July 2008 . 78 . 3 . 035120 . 10.1103/PhysRevB.78.035120. 0806.3213 . 2008PhRvB..78c5120F . 53133273 .