Enobosarm Explained

Verifiedrevid:442479761
Iupac Name:((2S)-3-(4-cyanophenoxy)-N-[4-cyano-3-(trifluoromethyl)phenyl]-2-hydroxy-2-methylpropanamide)
Width:250px
Legal Us:Investigational New Drug
Bioavailability:100% (rats)
Metabolism:CYP3A4, UGT1A1, UGT2B7
Metabolites:Enobosarm glucuronide
Elimination Half-Life:14–24 hours
Excretion:Feces (70%), urine (21–25%) (rats)
Cas Number:841205-47-8
Atc Prefix:None
Unii:O3571H3R8N
Pubchem:11326715
Drugbank:DB12078
Chemspiderid:9501667
Kegg:D10221
Chembl:1738889
Pdb Ligand:RLJ
Synonyms:Ostarine; GTx-024; MK-2866; S-22; VERU-024[1]
C:19
H:14
F:3
N:3
O:3
Smiles:O=C(NC1=CC=C(C#N)C(C(F)(F)F)=C1)[C@](C)(O)COC2=CC=C(C#N)C=C2
Stdinchi:1S/C19H14F3N3O3/c1-18(27,11-28-15-6-2-12(9-23)3-7-15)17(26)25-14-5-4-13(10-24)16(8-14)19(20,21)22/h2-8,27H,11H2,1H3,(H,25,26)/t18-/m0/s1
Stdinchikey:JNGVJMBLXIUVRD-SFHVURJKSA-N
Melting Point:132
Melting High:136

Enobosarm, also formerly known as ostarine and by the developmental code names GTx-024, MK-2866, and S-22, is a selective androgen receptor modulator (SARM) which is under development for the treatment of androgen receptor-positive breast cancer in women and for improvement of body composition (e.g., prevention of muscle loss) in people taking GLP-1 receptor agonists like semaglutide.[2] [3] [4] It was also under development for a variety of other indications, including treatment of cachexia, Duchenne muscular dystrophy, muscle atrophy or sarcopenia, and stress urinary incontinence, but development for all other uses has been discontinued. Enobosarm was evaluated for the treatment of muscle wasting related to cancer in late-stage clinical trials, and the drug improved lean body mass in these trials, but it was not effective in improving muscle strength.[5] [6] [7] [8] As a result, enobosarm was not approved and development for this use was terminated. Enobosarm is taken by mouth.[9]

Known possible side effects of enobosarm include headache, fatigue, anemia, nausea, diarrhea, back pain, adverse lipid changes like decreased high-density lipoprotein (HDL) cholesterol levels, changes in sex hormone concentrations like decreased testosterone levels, elevated liver enzymes, and liver toxicity, among others.[10] [11] [12] [13] The potential masculinizing effects of enobosarm, for instance in women, have largely not been evaluated and are unknown. The potential adverse effects and risks of high doses of enobosarm are also unknown. Enobosarm is a nonsteroidal SARM, acting as an agonist of the androgen receptor (AR), the biological target of androgens and anabolic steroids like testosterone and dihydrotestosterone (DHT). However, it shows dissociation of effect between tissues in preclinical studies, with agonistic and anabolic effects in muscle and bone, agonistic effects in breast, and partially agonistic or antagonistic effects in the prostate gland and seminal vesicles.[14] The AR-mediated effects of enobosarm in many other androgen-sensitive tissues are unknown.

Enobosarm was first identified in 2004 and has been under clinical development since at least 2005.[15] It is the most well-studied SARM of all of the agents that have been developed.[16] According to GTx, its developer, a total of 25 clinical studies have been carried out on more than 1,700 people involving doses from 1 to 100mg as of 2020.[17] However, enobosarm has not yet completed clinical development or been approved for any use. As of November 2023, it is in phase 3 clinical trials for the treatment of breast cancer and is in phase 2 studies for improvement of body composition in people taking GLP-1 receptor agonists. Enobosarm was developed by GTx, Inc., and is now being developed by Veru, Inc.

Aside from its development as a potential pharmaceutical drug, enobosarm is on the World Anti-Doping Agency list of prohibited substances and is sold for physique- and performance-enhancing purposes by black-market Internet suppliers. In one survey, 2.7% of young male gym users reported using SARMs.[18] In addition, a London wastewater analysis found that enobosarm was the most abundant "pharmaceutical drug" detected and was more prevalent than recreational drugs like MDMA and cocaine. Enobosarm is often used in these contexts at doses greatly exceeding those evaluated in clinical trials, with unknown effectiveness and safety. Many products sold online that are purported to be enobosarm either contain none or contain other unrelated substances.[19] Social media has played an important role in facilitating the widespread non-medical use of SARMs.

Medical uses

Enobosarm is not approved for any medical use and is not available as a licensed pharmaceutical drug as of 2023.

Side effects

General side effects that have been reported with enobosarm in clinical trials include headache, fatigue, anemia, nausea, diarrhea, and back pain.[20]

Enobosarm has shown dose-related adverse effects on serum lipids, sex hormone and gonadotropin levels, and carrier protein levels in clinical trials. It decreases HDL cholesterol levels, reducing them dose-dependently by 17% at a dose of 1mg/day and by 27% at a dose of 3mg/day. Decreases in total cholesterol levels and in triglyceride levels have also been seen, whereas LDL cholesterol levels are unchanged. In healthy elderly men, total testosterone levels decreased significantly at doses of 1 and 3mg/day (-31% and -57%, respectively), whereas levels of free testosterone, dihydrotestosterone (DHT), estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) did not change significantly at doses up to 3mg/day. In healthy postmenopausal women, LH and FSH decreased significantly only at the 3mg/day dose (-17% and -30%, respectively), whereas levels of total testosterone, free testosterone, DHT, and estradiol did not clearly change relative to placebo. SHBG levels were lowered at doses of 1 to 3mg/day, decreasing dramatically by 61% in men and by 80% in women at the 3mg/day dose. For comparison, testosterone enanthate by intramuscular injection at a highly supraphysiological dose of 600mg/week resulted in only a 31% decrease in SHBG levels.[21] Despite the large changes in SHBG levels, levels of free testosterone did not significantly change in either men or women. Small but significant increases in hemoglobin and hematocrit, and small but significant decreases in fasting blood glucose, insulin levels, and insulin resistance, have been observed with enobosarm at 3mg/day.[22]

In small short-term (3-month) clinical trials in healthy elderly or postmenopausal women, enobosarm at doses ranging from 0.1 to 3mg/day had mixed effects on sebum production and did not increase body hair growth or cause hirsutism.[23] These effects are measures of androgenic action in skin and hair follicles. In the first study, at doses of 0.1 to 3mg/day, there were no significant changes relative to placebo in sebum tape scores with enobosarm and there were no consistent increases in Ferriman–Gallwey score, with most women having no change in score or a decreased score and only one having an increase in score. In the second study, which employed 3mg/day enobosarm, there was a significant 1.25-fold increase in sebum production from baseline and a significant 1.5-fold increase in sebum production relative to placebo. No differences in sebaceous gland volume were apparent upon histological examination in this study.

At doses ranging from 0.1 to 18mg/day in clinical trials, enobosarm has been associated with elevated liver enzymes in subsets of individuals. Rates of elevated liver enzymes or of elevated alanine aminotransferase (ALT) levels have ranged from 0.6% to 33% in these trials. Liver enzyme elevations with enobosarm are often transient and resolve spontaneously. However, markedly elevated liver enzymes have occasionally occurred with enobosarm in clinical trials and have necessitated discontinuation. There have been several published case reports of hepatotoxicity with enobosarm as of 2023.[24] [25] [26] [27] [28] Between 2020 and 2022, there has been a rapid increase in reported cases of liver toxicity with SARMs. The hepatotoxicity with SARMs may be related to their resistance to hepatic metabolism, analogously to the case of 17α-alkylated anabolic steroids.

SARMs are often advertised and sold on the Internet at doses higher than have been described in the literature. Sometimes doses are recommended as several-fold or more greater than the doses used in clinical trials, or seemingly arbitrary doses are advised. For instance, enobosarm has been provided at doses of greater than or equal to 20mg per serving and recommended by bodybuilders and fitness enthusiasts at doses of 10 to 30mg/day, relative to the most widely assessed highest dose in clinical trials of 3mg/day—an up to 10-fold difference. SARMs, particularly when used at high or excessive doses for prolonged periods of time, may result in substantial suppression of endogenous sex hormones like testosterone and estradiol, in turn producing widespread unintended deleterious effects on physiological function. As examples, SARMs may produce potent anabolic effects with deficiency in important androgenic effects, may result in estrogen deficiency with consequences like bone loss among others, and, due to suppression of the hypothalamic–pituitary–gonadal axis (HPG axis), may cause infertility.

Androgens and anabolic steroids like testosterone, dihydrotestosterone (DHT), nandrolone, and oxandrolone, which are full agonists of the androgen receptor, produce virilizing or masculinizing effects like increased sebum production and acne, increased body hair growth, scalp hair loss, voice deepening, increased muscle mass, android fat redistribution, skeletal changes like widening of the shoulders and skull/facial changes, and genital growth both in males and females.[29] [30] [31] SARMs, which are tissue-selective mixed or partial agonists of the androgen receptor, are largely uncharacterized in terms of their masculinizing effects, but are likely to produce many of the same effects.[32] [33] SARMs specifically may be expected to retain masculinizing effects like increased muscle mass and bone changes, while possibly having reduced virilizing effects in certain other areas like androgenic skin and hair changes. Anecdotal reports of masculinization with SARMs in women exist in online forums.[34]

The United States Food and Drug Administration (FDA) has cautioned that SARMs could have serious adverse effects ranging from risk of heart attack to stroke and liver damage and has warned against their use in bodybuilding products.[35]

Overdose

Enobosarm has been assessed in clinical trials at doses ranging from 0.1 to 18mg/day. However, most research has been done at doses of 0.1 to 3mg/day, with two phase 3 clinical trials using a dosage of 3mg/day. A few small phase 1 and phase 2 trials of enobosarm for breast cancer have employed doses of 9 to 18mg/day. Larger, phase 3 trials of enobosarm at a dose of 9mg/day for breast cancer (e.g., ARTEST, n=210) are now underway.[36] [37] Doses of up to 100mg have been assessed in single-dose pharmacokinetic studies and doses of up to 30mg/day have been given in short 14-day pharmacokinetic studies. Enobosarm sold via black-market Internet suppliers and used non-medically is often taken at much higher doses than those used widely in clinical trials (e.g., 10–30mg/day), with unknown adverse effects and risks.

Interactions

Enobosarm is a substrate of the cytochrome P450 enzyme CYP3A4 and the UDP-glucuronosyltransferase (UGT) enzymes UGT1A1 and UGT2B7. It shows very minimal metabolism by cytochrome P50 enzymes, with CYP3A4 merely responsible for the greatest degree of metabolism. Since enobosarm is metabolized by CYP3A4, UGT1A1, and UGT2B7, inhibitors and inducers of these enzymes can modify the metabolism and pharmacokinetics of enobosarm. The strong CYP3A4 inhibitor itraconazole was shown to have minimal to no influence on the pharmacokinetics of enobosarm, whereas the strong CYP3A4 inducer rifampin reduced enobosarm peak levels by 23%, elimination half-life by 23%, and area-under-the-curve levels by 43%. The pan-UGT inhibitor probenecid was shown to not affect peak levels of enobosarm but to increase the elimination half-life of enobosarm by 78% and to increase area-under-the-curve levels of enobosarm by 50%. Enobosarm had no effect on the pharmacokinetics of celecoxib (a CYP2C9 substrate) or rosuvastatin (a BCRP substrate). Based on the preceding findings, it was concluded that enobosarm poses low risk for clinically relevant drug interactions.

Pharmacology

Pharmacodynamics

Enobosarm is a selective androgen receptor modulator (SARM), or a tissue-selective mixed agonist or partial agonist of the androgen receptor (AR). This receptor is the biological target of endogenous androgens like testosterone and dihydrotestosterone (DHT) and of synthetic anabolic steroids like nandrolone and oxandrolone. The affinity (Ki) of enobosarm for the AR is high and was measured as 3.8nM in one study, or approximately 16.8% of that of DHT. Enobosarm shows enantioselectivity for the AR and has similar but somewhat lower potency than DHT in terms of activating the receptor. In addition to general activation of the AR, enobosarm induces the N/C interaction (the interaction of the amino terminus and carboxyl terminus) of the AR less potently than does DHT, but in any case promotes the N/C interaction concentration-dependently and to the same maximal extent as DHT. The AR is widely expressed in tissues throughout the body, including in the prostate gland, seminal vesicles, genitals, gonads, skin, hair follicles, muscle, bone, heart, adrenal cortex, liver, kidneys, and brain, among others. The effects of SARMs including enobosarm in many of these tissues have yet to be characterized. In any case, enobosarm has been demonstrated to have varying full agonist or partial agonist or antagonist actions in specific tissues, including potent agonistic and anabolic effects in muscle and bone, potent agonistic effects in AR-expressing human breast cancer cell lines like MCF-7 and MDA-MB-231, and partially agonistic or antagonistic effects in the prostate gland, seminal vesicles, and uterus.[38] Enobosarm has additionally been shown to stimulate sexual motivation in female rats similarly to testosterone. Although enobosarm has not been specifically assessed in this area, another structurally unrelated quinolinone SARM, LGD-2226, has shown prosexual effects in male rats comparable to those of the synthetic androgen and anabolic steroid fluoxymesterone as well.[39]

The molecular mechanisms underlying the tissue-selective effects of enobosarm and other SARMs compared to testosterone and other androgens and anabolic steroids remain unknown. However, recruitment of both coactivators and corepressors instead of only coactivators and resultant differing receptor conformations, distinct tissue-specific modulation of signaling pathways mediating genomic and non-genomic effects, and differences in within-tissue ligand metabolism and modulation of ligand potency (i.e., potentiation versus lack thereof), among others, all constitute possible mechanisms.[40] In terms of coregulator recruitment, the ratios of coactivators to corepressors vary in different tissues throughout the body, and it is thought that SARMs may have agonistic effects in tissues with an excess of coactivators relative to corepressors like muscle and bone and may have partially agonistic or antagonistic effects in tissues with an excess of corepressors over coactivators like the prostate. Another mechanism may be that SARMs like enobosarm induce the N/C interaction less readily than AR full agonists like DHT. Induction of the N/C interaction has been associated with the effects of endogenous and exogenous AR agonists, for instance virilization and prostate growth.[41] [42]

In animal studies, enobosarm has shown potent muscle-promoting effects that were similar to those of testosterone and DHT.[43] [44] [45] [46] In one of the first published studies, enobosarm maximally restored prostate weight to 51%, seminal vesicle weight to 98%, and levator ani muscle weight to 136% in castrated male rats relative to gonadally intact control male rats, with an ED50 dose for muscle of 0.03mg/day.[47] For comparison, testosterone propionate was able to maximally stimulate levator ani muscle to 104% and prostate weight to 121%, with ED50 doses of 0.15mg/day and 0.13mg/day, respectively. Hence, enobosarm was able to stimulate the levator ani muscle to a size greater than that in normal male rats or produced with exogenous testosterone in castrated male rats, but was only capable of partially rescuing prostate gland weight. Additionally, enobosarm fully maintained or restored levator ani weight at doses that did not affect LH or FSH levels in gonadally intact animals (≤0.1mg/day). As such, it was more potent in stimulating muscle than testosterone at doses that did not affect gonadotropin levels. In gonadally intact male rats, enobosarm significantly increased levator ani muscle weight to 131% of intact controls but significantly decreased the weights of the prostate gland and seminal vesicles, demonstrating an antagonistic or partially agonistic effect in these tissues. In another animal study, enobosarm and DHT increased levator ani weights to similar or slightly different extents in intact male rats, but DHT strongly increased prostate weight while enobosarm reduced prostate weight.[48] Aside from effects in muscle tissue, enobosarm has been assessed and found to completely maintain bone quality and composition in castrated male rats and to partially but not fully prevent bone loss in ovariectomized female rats, indicating potent anabolic effects in bone as well.

In a phase 2 human clinical trial in healthy elderly men and postmenopausal women, enobosarm dose-dependently increased lean body mass (muscle mass) across doses of 0.1, 0.3, 1, and 3mg/day, with a significant 1.3kg gain over placebo at 3mg/day and a non-significant 0.7kg gain over placebo at 1mg/day. Similarly, in two phase 3 clinical trials in men and postmenopausal women with muscle wasting due to non-small-cell lung cancer, enobosarm at 3mg/day significantly increased lean body mass by 0.41kg and 0.47kg. However, enobosarm did not successfully increase muscle strength in these phase 3 trials. In any case, it has been suggested that the study designs and physical function outcomes in such trials may have been flawed.[49] [50] [51] [52] The increases in lean body mass that have been seen with employed doses of enobosarm in clinical trials are very modest compared to those produced with supraphysiological doses of testosterone over similar timeframes (e.g., 0.5–1.5kg with enobosarm versus 5–8kg with 300–600mg/week intramuscular testosterone enanthate in healthy young men).[53] [54] The effects of higher doses of enobosarm (9–18mg/day) on lean body mass and muscle strength are also being evaluated in women with breast cancer.[55] There is some evidence that women may be more sensitive to lean body mass increases with SARMs, specifically GSK-2881078 but potentially also others like enobosarm, than men.

In addition to its mixed agonist–antagonist activity at the AR, enobosarm is likely to also differ from steroidal androgens in its effects due to differences in within-tissue ligand metabolism. The virilizing and androgenic effects of the traditional steroidal androgens like testosterone in skin, hair follicles, and the prostate gland are attributed to high expression of 5α-reductase in these tissues and consequent local conversion and potentiation into more potent androgens. In the case of testosterone, this is via conversion into the 10-fold more potent androgen DHT. Enobosarm is not subject to this local transformation and potentiation, and so is theorized to have greatly reduced effects in these tissues relative to testosterone and certain other steroidal androgens. This is likewise theorized to be the case for non-5α-reductase-potentiated anabolic steroids like nandrolone and oxandrolone, which have high myotrophic–androgenic potency ratios in animals. The lack of 5α-reduction may result in reduced androgenic side effects like scalp hair loss, facial and body hair growth, and prostate growth.[56] On the other hand, although SARMs, like enobosarm, as well as anabolic steroids, may have reduced virilizing effects in skin and hair follicles, this is not necessarily the case for virilization in general. In particular, the muscle-promoting effects of these agents can be considered a masculinizing effect.[57] The potential masculinizing effects of enobosarm and SARMs in general are largely uncharacterized and unknown. Aside from metabolism differences related to 5α-reduction, enobosarm has also shown much greater impact in the liver, specifically on certain aspects of hepatic protein synthesis like reduction of sex hormone-binding globulin (SHBG) production, than even highly supraphysiological doses of parenteral testosterone.[58] This phenomenon has also been seen with other SARMs, such as LGD-4033,[59] as well as with synthetic orally active 17α-alkylated anabolic steroids like stanozolol.[60] [61] It can be attributed to the first pass through the liver with oral administration and to the high oral bioavailability and strong resistance to hepatic metabolism of these agents.[62] [63]

Enobosarm has no estrogenic activity, either intrinsic to itself or via its metabolites.[64] As a result, the drug is not expected to have feminizing effects or risk of gynecomastia (breast development) nor to stimulate estrogen-sensitive breast cancer. SARMs like enobosarm are not ideal agents for androgen replacement therapy as they are not expected to reproduce the full spectrum of effects of testosterone and other androgens, including not only AR-mediated effects but also notably aromatization into estrogen and required physiological estrogenic effects in bone and brain. Enobosarm has been found to be a weak antagonist of the progesterone receptor and hence might have some capacity for antiprogestogenic effects. Aside from its weak interaction with the progesterone receptor, enobosarm is highly selective for the AR and does not bind to other nuclear hormone receptors.

Pharmacokinetics

Absorption

Enobosarm is orally bioavailable due to a lack of extensive first-pass metabolism. In rats, the oral bioavailability of enobosarm was found to be 100%. Enobosarm is rapidly absorbed with oral administration and reaches maximal concentrations median 1.0hours (range 1.0–2.0hours) following administration.[65] The drug reaches a peak concentration of 56.0ng/mL (range 53.1–123.0ng/mL) following a single 3mg dose and a steady-state peak of 68.1ng/mL following repeated 3mg doses. The pharmacokinetics of enobosarm are linear and proportional over a dose range of 1 to 100mg in single doses in healthy men. The pharmacokinetics of enobosarm are similar in young versus elderly individuals. A concentration–time curve of enobosarm levels following a single oral dose of enobosarm in humans has been published.

Distribution

Enobosarm is a small-molecule and highly lipophilic compound. Compounds of this type are typically able to diffuse freely through biological membranes such as cell membranes and barriers like the blood–brain barrier.[66] [67] This is in fact essential for the action of nuclear receptor ligands like enobosarm since their biological targets (the androgen receptor in this case) are located intracellularly. One in silico study predicted that, on the basis of its overall physicochemical properties (but not considering active transport), enobosarm would be unlikely to cross the blood–brain barrier and hence would be a peripherally selective drug with reduced or no central nervous system effects.[68] However, in a rat tissue distribution study, enobosarm was found to be concentrated in brain tissues to a similar extent as other target tissues like skeletal muscle, bone, prostate, and seminal vesicles.[69] This is consistent with enobosarm producing centrally mediated effects in humans like suppression of LH and FSH secretion.

Enobosarm does not bind to sex hormone-binding globulin.

Metabolism

In vitro studies found very minimal metabolism of enobosarm by human cytochrome P450 enzymes.[70] The greatest degree of oxidative metabolite generation occurred with CYP3A4. Upon incubation with human UDP-glucuronosyltransferase (UGT) enzymes, enobosarm glucuronide was generated, with a majority of this inactive metabolite being produced by UGT1A1 and UGT2B7. Enobosarm glucuronide is the primary circulating metabolite of enobosarm.

Coadministration of the strong CYP3A4 inhibitor itraconazole had minimal impact on the pharmacokinetics of enobosarm and enobosarm glucuronide, whereas the strong CYP3A4 inducer rifampin reduced enobosarm peak levels by 23%, elimination half-life by 23%, and area-under-the-curve levels by 43%. Coadministration of the pan-UGT inhibitor probenecid with enobosarm resulted in similar peak levels of enobosarm but the elimination half-life of enobosarm was extended by 78% and area-under-the-curve levels increased by 50%. These data are consistent with the preclinical findings that enobosarm is a substrate of CYP3A4 and UGT enzymes.

The metabolism of enobosarm is similar to that of the closely structurally related drug bicalutamide.

Elimination

In rats, enobosarm was excreted approximately 70% in feces and 21 to 25% in urine.

Enobosarm has an elimination half-life of approximately 14 to 24hours in human volunteers. In one pharmacokinetic study, the mean terminal half-life was 22.0 ± 5.8 (SD) hours, with a range of 13.7 to 31.3hours in different individuals

Chemistry

Enobosarm is a small-molecule (molecular weight = 389.3g/mol) and highly lipophilic (predicted log P = 2.7–3.3) compound.[71] [72]

Enobosarm and related SARMs like acetothiolutamide, andarine (acetamidoxolutamide; GTx-007; S-4), and GTx-027 were derived from structural modification of the arylpropionamide nonsteroidal antiandrogen bicalutamide.[73] [74] [75] [76] They are nonsteroidal arylpropionamides themselves and are close structural analogues of bicalutamide.[77] Bicalutamide was used to derive acetothiolutamide, andarine was developed from acetothiolutamide, the SARM S-1 was developed from andarine, and finally enobosarm was developed from S-1.[78] Bicalutamide is used clinically as an antiandrogen, but there is some evidence that bicalutamide itself may have some SARM-like properties in certain tissues, for instance in muscle and bone.[79] [80] [81]

Enobosarm (S-22) and andarine (S-4) and their chemical structures have sometimes been confused.[82] The chemical structure of enobosarm was not disclosed until November 2011.[83]

Novel nonsteroidal antiandrogens have been developed from enobosarm with enhanced potency and activity relative to conventional antiandrogens like bicalutamide and enzalutamide.[84] [85]

History

The first SARMs were arylpropionamides derived from the nonsteroidal antiandrogen bicalutamide.[86] They were discovered by James T. Dalton and colleagues at the University of Tennessee and other institutions and were first described in a paper published in 1998.[87] At the time, these AR agonists were referred to as "nonsteroidal androgens", a drug class that had not been previously described.[88] By 1999 however, on the basis of the selective estrogen receptor modulator (SERM)-like mixed agonist–antagonist and tissue-selective activity of these nonsteroidal AR agonists, the term "selective androgen receptor modulator" or "SARM" was introduced and adoption of this name had begun. The arylpropionamide SARM andarine (GTx-007; S-4) was first described in the literature by 2002.[89] [90] [91] In 2003, arylpropionamide AR agonists, including andarine, were first reported to possess SARM-type tissue selectivity in vivo. Enobosarm (GTx-024; S-22), another arylpropionamide SARM, was first identified in 2004 and was first described in the literature in 2005. GTx, a pharmaceutical company founded in Memphis, Tennessee in 1997, licensed the rights to enobosarm from the University of Tennessee Research Foundation and began developing it as a pharmaceutical drug.

A phase 1 clinical trial employing enobosarm had been completed by 2005. By 2007, enobosarm was in a phase 2 trial, and that year GTx signed an exclusive license agreement for its SARM program with Merck & Co.[92] The companies ended the deal in 2010.[93] In August 2011, there was a 12-week double-blind, placebo controlled phase 2 trial that focused on elderly men and postmenopausal women which concluded that enobosarm showed statistically significant improvements in total lean body mass and physical function without apparent adverse effects on hair growth or sebum production. In August 2013, GTx announced that enobosarm had failed in two phase 3 clinical trials to treat wasting in people with lung cancer.[94] The company had invested around $35 million in the development of the drug.[95] The company said at that time that it planned to pursue approval of enobosarm in Europe; the company was also still developing GTx-758, a nonsteroidal estrogen, for castration-resistant prostate cancer.[96] As of 2018, enobosarm was the only SARM to have reached or completed phase 3 clinical trials.

In 2016, GTx began phase 2 trials, to see if enobosarm might be effective to treat stress urinary incontinence in women.[97] In 2018, GTx announced the phase 2 trials on the effectiveness of enobosarm for stress urinary incontinence in women failed to achieve its primary endpoint in the ASTRID Trial.[98] By September 2023, development of enobosarm for stress urinary incontinence had been discontinued. In 2022, the FDA granted fast tract designation to enobosarm in AR+, ER+, HER2- metastatic breast cancer.[99] In January 2024, Veru Inc. submitted an Investigational New Drug application to the FDA of enobosarm for prevention of muscle loss and augmentation of fat loss in combination with glucagon-like peptide-1 (GLP-1) receptor agonists like semaglutide for weight loss.[100] In addition, they announced plans to conduct a phase 2b study of enobosarm at doses of 3 to 6mg/day for this purpose in sarcopenic obese or overweight elderly individuals receiving GLP-1 receptor agonists.

Enobosarm was developed by GTx, Inc., and is now being developed by Veru, Inc.

Society and culture

Names

Enobosarm is the generic name of the drug and its International Nonproprietary Name (INN).[101] Ostarine was a tentative brand name of the drug created by GTx, Inc. that did not end up being used for marketing purposes but continues to be used as a synonym for the drug. Enobosarm is also known by the pharmaceutical developmental code names S-22 (synthesis paper), GTx-024 (GTx, Inc.), MK-2866 (Merck), and VERU-024 (Veru, Inc.).

Non-medical use

Enobosarm and other SARMs are sold by black-market vendors on the Internet. These agents have increasingly become used by the general public as "gym supplements" such as pre-workout or lifestyle drugs, rather than as an aid to performance in athletic or bodybuilding competitions. In one survey, 2.7% of young male gym users in the Netherlands reported using SARMs. In addition, a 2018 analysis of a fatberg from a sewer in central London showed enobosarm to be the most abundant "pharmaceutical drug" detected, and was present at higher concentration than recreational drugs such as MDMA and cocaine. While this isolated result may not be representative of overall levels of use, for enobosarm to be detectable in sewer deposits reflects significant levels of enobosarm use in the area close to where the sample was collected.[102] Doses of enobosarm sold online and used non-medically are often many times higher than those assessed in clinical trials. Aside from enobosarm, the other most commonly used SARMs include vosilasarm (RAD140; "testolone"), LGD-4033 (VK5211; "ligandrol"), and andarine (GTx-007; S-4). Many products sold online that are purported to be enobosarm either contain none or contain other unrelated substances, and doses are also frequently not as labeled. Social media has played an important role in facilitating the widespread non-medical use of SARMs.

Doping in sport

SARMs including enobosarm may be and have been used by athletes to assist in training and increase physical stamina and fitness, potentially producing effects similar to anabolic steroids. For this reason, SARMs were banned by the World Anti-Doping Agency in January 2008, despite no drugs from this class yet being in clinical use, and blood tests for all known SARMs have been developed.[103] [104] There are a variety of known cases of doping in sports with enobosarm by professional athletes.

List of doping cases

In May 2017, Dynamic Technical Formulations voluntarily recalled all lots of Tri-Ton, a dietary supplement that the FDA tested and found to contain Enobosarm and andarine.[105]

In October 2018, UFC fighter Sean O'Malley tested positive for Enobosarm and was suspended by the Nevada State Athletic Commission and USADA for six months. O'Malley tested positive again on May 25, 2019 and was suspended for nine months by the same agencies. USADA determined that none of O'Malley's positive tests were consistent with intentional use and he was allowed to compete at UFC 248 as long as he kept his levels below the threshold of 100 ng/ml.[106]

On January 7, 2019, the College National Football Championship was played between University of Alabama and Clemson University. Prior to the College Football National Championship game, three Clemson players who were Dexter Lawrence, Braden Galloway and Zach tested positive for a substance known as enobosarm. On June 23, 2019 Clemson did not release enobosarm investigation findings, citing privacy law.[107]

In July 2019, National Football League player Taylor Lewan failed a drug test for Enobosarm, which Lewan claimed he ingested accidentally as an unlabeled ingredient in a supplement.[108]

On October23, 2020, the Union Cycliste Internationale (UCI) announced that the Italian rider Matteo Spreafico has been notified of two adverse analytical findings (AAFs) for Enobosarm in two samples collected during the Giro d’Italia on 1516 October 2020.[109]

On July6, 2021, during the 2020 Summer Olympics, Brazil women's national volleyball team player Tandara was temporarily suspended for testing positive for enobosarm. The test was carried out and identified by the Brazilian Doping Control Authority (ABDC).[110]

On August12, 2021, after the 2020 Summer Olympics, Chijindu "CJ" Ujah, A member of the silver medal-winning British 4×100 relay team was temporarily suspended for testing positive for both enobosarm and S-23. The sample was collected post event by the International Testing Agency (ITA) and confirmed two days later as positive. The case was referred to the anti-doping division of the Court of Arbitration for Sport.[111] Finally in February 2022, Great Britain were stripped of their silver medal.[112] In October 2022, Ujah was suspended for 22 months by the ITA.[113]

In October 2021, two Thoroughbred horses named Arafat and Komunist tested positive for enobosarm after races at Woodbine Racetrack. In a decision of the Alcohol and Gaming Commission of Ontario issued May 30, 2022, the horses were declared unplaced in the races in question, and their trainer Robert Gerl was fined $100,000 (as well as forfeiting prize money) and suspended from racing for 20 years.[114]

In May 2022, National Football League Wide receiver DeAndre Hopkins was suspended six games without pay by the NFL for violating the league's performance-enhancing drug policy. According to Hopkins, he tested positive for enobosarm.[115]

In April 2023, British boxer Amir Khan was banned for two years after an anti-doping test revealed the presence of enobosarm following his fight against Kell Brook in February 2022.[116]

On May 1, 2024, American boxer Ryan Garcia tested positive for the performance-enhancing substance Ostarine the day before and the day of his upset win over Devin Haney last month, per a Voluntary Anti-Doping Association letter sent to all parties Wednesday and obtained by ESPN. The samples were taken prior to the fight, but the results weren't known until later. Garcia's A-sample also screened positive for 19-norandrosterone, but its presence is unconfirmed at this time. Garcia floored Haney three times during the majority decision victory, but that result could possibly be overturned because his B-sample tested positive on May 22, 2024. Garcia's fate now rests in the hands of the New York State Athletic Commission, which will adjudicate any suspensions and financial penalties. Sanctions also include the possibility of his win over Haney being overturned to a no-contest or having it changed to a disqualification. Despite his "B" samples returning positive results, Garcia has maintained his innocence and has cited substance contamination.[117]

Research

Enobosarm is currently under development for the treatment of breast cancer. It was also previously under development for a variety of other potential uses, including treatment of cachexia, Duchenne muscular dystrophy, muscle atrophy or sarcopenia, and stress incontinence. However, development for all other indications has been discontinued.

Enobosarm was assessed for the treatment of muscle wasting in people with lung cancer in two phase 3 clinical trials. The findings of these trials were reported in 2013. Enobosarm significantly improved lean body mass in the trials, but it was not effective in improving muscle strength, as measured by stair climb power. Consequent to these findings, enobosarm did not gain regulatory approval, and development for this use was terminated. Enobosarm had originally been under development for the treatment of sarcopenia (age-related muscle atrophy). However, the FDA requested a cardiovascular safety study be conducted to proceed with phase 3 trials for this indication. The developer of enobosarm refused to conduct this study due to the considerable costs that would be involved. Instead, it opted to trial enobosarm for muscle wasting in cachexia patients, in whom the FDA was more tolerant to cardiovascular side effects and did not require cardiovascular safety evaluation.

Following negative findings for muscle wasting, enobosarm was evaluated for the treatment of stress urinary incontinence in postmenopausal women. It was expected that enobosarm might be effective for this use by strengthening the pelvic floor muscles. Enobosarm reached phase 2 clinical trials for this indication, but development was discontinued due to lack of effectiveness in a phase 2 study.

Subsequently, enobosarm was repurposed again for the treatment of androgen receptor-positive (AR+) estrogen receptor-positive (ER+) breast cancer. As of November 2023, it is in phase 3 clinical trials for the treatment of this type of breast cancer. Increases in lean body mass and muscle strength as a secondary benefit with enobosarm are also being evaluated in these women. These trials are notably employing several-fold higher doses of enobosarm than were assessed in the muscle wasting phase 3 trials (9mg/day versus 3mg/day, respectively).

In January 2024, it was announced that enobosarm was being developed for prevention of muscle wasting and augmentation of fat loss in combination with glucagon-like peptide-1 (GLP-1) receptor agonists like semaglutide for weight loss. A phase 2b clinical trial for this indication with 3 to 6mg/day enobosarm in sarcopenic obese or overweight elderly individuals is being prepared.

According to GTx, the original developer of enobosarm, a total of 25 clinical studies have been carried out on more than 1,700 people involving doses from 1 to 100mg as of 2020. However, enobosarm has not yet completed clinical development or been approved for any use.

See also

Further reading

External links

Notes and References

  1. Web site: Enobosarm - GTx. Adis Insight . Springer Nature Switzerland AG . 22 December 2023.
  2. Srinath R, Dobs A . Enobosarm (GTx-024, S-22): a potential treatment for cachexia . Future Oncology . 10 . 2 . 187–194 . February 2014 . 24490605 . 10.2217/fon.13.273 . Pharmacokinetics & metabolism: Enobosarm was shown to have linear pharmacokinetics in single-dose studies in healthy male subjects using doses of 1, 3, 10, 30 and 100 mg. In another study enobosarm was given to healthy subjects at doses of 1, 3, 10 and 30 mg over 14 days. Per data from GTx, Inc., the halflife ranged from 14–21 h with similar mean maximum plasma concentration and exposure in subjects of varying ages (Table 1) [20]. .
  3. Jones A, Coss CC, Steiner MS, Dalton JT . An overview on selective androgen receptor modulators: Focus on enobosarm . Drugs of the Future . 38 . 5 . 2013 . 0377-8282 . 10.1358/dof.2013.038.05.1970866 . 309–316. 75202407.
  4. Dai C, Ellisen LW . Revisiting Androgen Receptor Signaling in Breast Cancer . The Oncologist . 28 . 5 . 383–391 . May 2023 . 36972361 . 10166165 . 10.1093/oncolo/oyad049 .
  5. Wu C, Kovac JR . Novel Uses for the Anabolic Androgenic Steroids Nandrolone and Oxandrolone in the Management of Male Health . Current Urology Reports . 17 . 10 . 72 . October 2016 . 27535042 . 10.1007/s11934-016-0629-8 . Enobosarm has also been evaluated in two phase III clinical trials entitled Prevention and treatment Of muscle Wasting in patiEnts with Cancer 1 and 2 (POWER1 (NCT01355484) and POWER2 (NCT01355497)). [...] The co-primary endpoints of this trial were lean body mass (LBM) response and physical function response for enobosarm vs. placebo after 3 months of treatment. Beneficial effects on both LBM and physical function were found in POWER1, and benefit to LBM but equivocal effects on physical function were found in POWER2. . 43199715 .
  6. Mohideen H, Hussain H, Dahiya DS, Wehbe H . Selective Androgen Receptor Modulators: An Emerging Liver Toxin . Journal of Clinical and Translational Hepatology . 11 . 1 . 188–196 . February 2023 . 36479151 . 9647117 . 17α-alkylated AASs have been modified to be more resistant to liver degradation so that they have decreased first-pass metabolism, allowing for better oral bioavailability and more stable serum levels. However, reduced liver clearance increases the potential for hepatotoxicity.19 Much like this class of AASs, SARMs have been designed for adequate oral bioavailability with decreased liver degradation which would likely create a similar potential for hepatotoxicity.8,15 [...] Ostarine was the first SARM to undergo a phase III clinical trial. The POWER1 and POWER2 trials were two identical randomized, double-blind, placebo-controlled studies to evaluate the efficacy of Ostarine for the treatment of muscle wasting in non-small cell lung cancer. Participants were given 3 mg of Ostarine versus placebo. No study results were published; but GTx Incorporated reported that Ostarine failed to meet endpoints for improvement in lean body mass and physical function compared with placebo. .
  7. Fonseca GW, Dworatzek E, Ebner N, Von Haehling S . Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials . Expert Opinion on Investigational Drugs . 29 . 8 . 881–891 . August 2020 . 32476495 . 10.1080/13543784.2020.1777275 . [...] to proceed with enobosarm into a phase III clinical trial in patients with sarcopenia, the FDA requested a cardiovascular safety study, which the manufacturer refused to undertake due to considerable costs and decided to test enobosarm in cancer cachexia patients in whom the FDA was more tolerant to the long-term cardiovascular side effects [67]. [...] Enobosarm promotes a similar anabolic response compared with DHT via muscle AR activation, [...] [35]. In a recent study with ovariectomized mice, the weight of the musculus gastrocnemius has been shown to be higher in all groups treated with ostarine as well as bone mineral density and bone biomechanical properties [15]. Moreover, the stimulation of reproductive organs with enobosarm seems to be less pronounced compared to testosterone administration [36] due to its partial agonist and antagonist effect on other androgen-dependent tissues such as prostate and seminal vesicles [37]. [...] In the POWER trials (POWER 1, NCT01355484 and POWER 2, NCT01355497; Table 1), double-blind, placebo-controlled, and multi-center phase III studies [40], patients with non-small-cell lung cancer were given 3 mg of enobosarm or placebo for five months. Despite a lower rate of decline in body weight in the group treated with enobosarm in POWER 1, patients increased LBM at day 84 and day 147 in POWER 1 (+0.41 kg) and POWER 2 (+0.47 kg) compared with patients receiving placebo. However, no physical function improvement has been reported in both studies [41]. . 219174372 .
  8. GTX Reports Results for Enobosarm POWER Trials for the Prevention and Treatment of Muscle Wasting in Patients with Non-Small Cell Lung Cancer . 19 August 2013 .
  9. Christiansen AR, Lipshultz LI, Hotaling JM, Pastuszak AW . Selective androgen receptor modulators: the future of androgen therapy? . Translational Andrology and Urology . 9 . Suppl 2 . S135–S148 . March 2020 . 32257854 . 7108998 . 10.21037/tau.2019.11.02 . Unfortunately, results of recent clinical trials of the SARM GTx-024 (Enobosarm) have tempered expectations for its utility as a therapy for muscle wasting. Early on, GTx-024 appeared to have a very bright future as a treatment for sarcopenia/cachexia. Preliminary clinical trials demonstrated that GTx-024 could increase lean body mass and improve physical function without androgenic side effects (27). However, Enobosarm was dealt a blow after the phase III Prevention and treatment Of muscle Wasting in patients with cancER (POWER) I and II trials, where increases in lean body mass were once again observed, but without improved stair climb power (79,80). Failure to attain both primary endpoints led to a lack of approval by the Food and Drug Administration (FDA), which has cast doubt on the previously charted course for SARMs and has tempered enthusiasm regarding the role of SARMs in the treatment of muscle wasting conditions. . free .
  10. Zilbermint MF, Dobs AS . Nonsteroidal selective androgen receptor modulator Ostarine in cancer cachexia . Future Oncology . 5 . 8 . 1211–1220 . October 2009 . 19852734 . 10.2217/fon.09.106 .
  11. Tauchen J, Jurášek M, Huml L, Rimpelová S . Medicinal Use of Testosterone and Related Steroids Revisited . Molecules . 26 . 4 . 1032 . February 2021 . 33672087 . 7919692 . 10.3390/molecules26041032 . free .
  12. Solomon ZJ, Mirabal JR, Mazur DJ, Kohn TP, Lipshultz LI, Pastuszak AW . Selective Androgen Receptor Modulators: Current Knowledge and Clinical Applications . Sexual Medicine Reviews . 7 . 1 . 84–94 . January 2019 . 30503797 . 6326857 . 10.1016/j.sxmr.2018.09.006 .
  13. Choi SM, Lee BM . Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids . Expert Opinion on Drug Safety . 14 . 11 . 1773–1785 . 2015 . 26401842 . 10.1517/14740338.2015.1094052 . Anabolic androgenic steroids (AASs) comprise synthetic derivatives of testosterone. AASs bind directly to the cytosolic androgen receptor (AR), which is widely distributed across reproductive and non-reproductive tissues, including the prostate, skeletal muscle, liver, skin, and central nervous system (CNS). This binding results in various physiological activities [1], the major one being a masculinizing effect in the skeletal muscle via muscle building [2]. . 8104778 .
  14. Proverbs-Singh T, Feldman JL, Morris MJ, Autio KA, Traina TA . Targeting the androgen receptor in prostate and breast cancer: several new agents in development . Endocrine-Related Cancer . 22 . 3 . R87–R106 . June 2015 . 25722318 . 4714354 . 10.1530/ERC-14-0543 . Selective AR modulators (SARMs) are a class of drugs in development; unlike androgen synthesis inhibitors, they act as selective androgen agonists and show promise as a potential therapeutic strategy in BCa. Enobosarm (GTx024) is the farthest along in clinical development, and demonstrates an agonist effect that in some populations inhibits BCa growth. Preclinical data show antitumor activity of GTx-024 in ARC stably expressing cell lines MCF-7 (ERC) and MDA-MB-231 (TNBC) implanted subcutaneously into nude mice. Tumor growth was reduced more than 75% in MDA-MB-231-AR cells and 50% in MCF-7-AR cells compared with vehicle-treated tumors, demonstrating benefit (Dalton et al. 2013). .
  15. Mohler ML, Nair VA, Hwang DJ, Rakov IM, Patil R, Miller DD . Nonsteroidal tissue selective androgen receptor modulators: a promising class of clinical candidates . Expert Opinion on Therapeutic Patents . Informa Healthcare . 15 . 11 . 2005-10-28 . 1354-3776 . 10.1517/13543776.15.11.1565 . 1565–1585. 96279138 .
  16. Book: Zajac JD, Seeman E, Russell N, Ramchand SK, Bretherton I, Grossmann M, Davey RA . Encyclopedia of Bone Biology . 2020 . Academic Press . 978-0-12-814082-6 . 533–550 . Testosterone. .
  17. Web site: GTx, Inc. Release: Enobosarm Meets Pre-Specified Primary Efficacy Endpoint In Ongoing Phase 2 Clinical Trial In ER+/AR+ Breast Cancer . 28 November 2016 . BioSpace . Enobosarm, a selective androgen receptor modulator (SARM) has been evaluated in 24 completed or ongoing clinical trials enrolling over 1,500 subjects, of which approximately 1,000 subjects were treated with enobosarm at doses ranging from 0.1 mg to 100 mg..
  18. Leciejewska N, Jędrejko K, Gómez-Renaud VM, Manríquez-Núñez J, Muszyńska B, Pokrywka A . Selective androgen receptor modulator use and related adverse events including drug-induced liver injury: Analysis of suspected cases . European Journal of Clinical Pharmacology . 80. 2. December 2023 . 185–202 . 38059982 . 10.1007/s00228-023-03592-3 . free . 10847181 .
  19. Van Wagoner RM, Eichner A, Bhasin S, Deuster PA, Eichner D . Chemical Composition and Labeling of Substances Marketed as Selective Androgen Receptor Modulators and Sold via the Internet . JAMA . 318 . 20 . 2004–2010 . November 2017 . 29183075 . 5820696 . 10.1001/jama.2017.17069 .
  20. Hall E, Vrolijk MF . Androgen Receptor and Cardiovascular Disease: A Potential Risk for the Abuse of Supplements Containing Selective Androgen Receptor Modulators . Nutrients . 15 . 15 . 3330 . July 2023 . 37571268 . 10420890 . 10.3390/nu15153330 . Common low-grade side effects of ostarine include headache, nausea, fatigue, and back pain. Other observed effects include increases in alanine transaminase and decreases in HDL, blood glucose, and insulin resistance, all of which returned to normal upon stopping ostarine treatment [1,35]. Information from bodybuilding forums and fitness enthusiasts cited 10 mg to 30 mg daily as the optimal dose for a minimum of 12 weeks, which is 10 times higher than the clinically studied dose, with anecdotal evidence suggesting that taking ostarine for much longer than this can suppress free T levels [1]. . free .
  21. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R . The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men . The New England Journal of Medicine . 335 . 1 . 1–7 . July 1996 . 8637535 . 10.1056/NEJM199607043350101 . free .
  22. Coss CC, Jones A, Hancock ML, Steiner MS, Dalton JT . Selective androgen receptor modulators for the treatment of late onset male hypogonadism . Asian Journal of Andrology . 16 . 2 . 256–261 . 2014 . 24407183 . 3955335 . 10.4103/1008-682X.122339 . free .
  23. Coss CC, Jones A, Dalton JT . Selective androgen receptor modulators as improved androgen therapy for advanced breast cancer . Steroids . 90 . 94–100 . November 2014 . 24945109 . 10.1016/j.steroids.2014.06.010 . 23450056 .
  24. Vignali JD, Pak KC, Beverley HR, DeLuca JP, Downs JW, Kress AT, Sadowski BW, Selig DJ . Systematic Review of Safety of Selective Androgen Receptor Modulators in Healthy Adults: Implications for Recreational Users . Journal of Xenobiotics . 13 . 2 . 218–236 . May 2023 . 37218811 . 10204391 . 10.3390/jox13020017 . free .
  25. Bedi H, Hammond C, Sanders D, Yang HM, Yoshida EM . Drug-Induced Liver Injury From Enobosarm (Ostarine), a Selective Androgen Receptor Modulator . ACG Case Reports Journal . 8 . 1 . e00518 . January 2021 . 34368386 . 8337042 . 10.14309/crj.0000000000000518 .
  26. Weinblatt D, Roy S . Drug-Induced Liver Injury Secondary to Enobosarm: A Selective Androgen Receptor Modulator . Journal of Medical Cases . 13 . 5 . 244–248 . May 2022 . 35655632 . 9119364 . 10.14740/jmc3937 .
  27. Mertens JE, Bömmer MT, Regier MB, Gabriëls G, Pavenstädt H, Grünewald I, Horvath J, Trebicka J, Schmidt H, Schlevogt B . Liver Injury after Selective Androgen Receptor Modulator Intake: A Case Report and Review of the Literature . Zeitschrift für Gastroenterologie . October 2023 . 37871633 . 10.1055/a-2165-6323 . 264426934 .
  28. Arayangkool C, Gozun M, Tanariyakul M, Techasatian W, Leesutipornchai T, Nishimura Y . Bile Cast Nephropathy Because of Acute Liver Injury Associated With Selective Androgen Receptor Modulators . ACG Case Reports Journal . 10 . 7 . e01105 . July 2023 . 37501938 . 10371315 . 10.14309/crj.0000000000001105 .
  29. Kicman AT . Pharmacology of anabolic steroids . British Journal of Pharmacology . 154 . 3 . 502–521 . June 2008 . 18500378 . 2439524 . 10.1038/bjp.2008.165 .
  30. Book: Liang JY, Chang HC, Hsu GL . Penis Endocrinology . Skinner MK . Encyclopedia of Reproduction . Elsevier Science . 2018 . 978-0-12-815145-7 . https://books.google.com/books?id=m4RlDwAAQBAJ&pg=PA376 . 23 December 2023 . 376.
  31. Machek SB, Cardaci TD, Wilburn DT, Willoughby DS . Considerations, possible contraindications, and potential mechanisms for deleterious effect in recreational and athletic use of selective androgen receptor modulators (SARMs) in lieu of anabolic androgenic steroids: A narrative review . Steroids . 164 . 108753 . December 2020 . 33148520 . 10.1016/j.steroids.2020.108753 . Additionally, reported SARM-induced fat free mass increases are a mere fraction of that reported in modest doses of testosterone derivatives in similar timeframes (~1.5kg versus ~7kg in SARMs and testosterone, respectively) [21]. . 225049089 .
  32. Handelsman DJ . History of androgens and androgen action . Best Practice & Research. Clinical Endocrinology & Metabolism . 36 . 4 . 101629 . July 2022 . 35277356 . 10.1016/j.beem.2022.101629 . The next invention was that of the first non-steroidal androgen by Dalton et al. [111] in 1998, six decades after the first non-steroidal estrogen [112]. This creates a new class of non-steroidal synthetic androgen, often termed Specific Androgen Receptor Modulators (SARM), a misleading marketing term rather than an accurate pharmacological description [113,114], usurping a speculative but unsound analogy with Specific Estrogen Receptor Modulators (SERM). [...] none of the non-steroidal androgens under development [116,117] are marketed by 2021. Yet hope springs eternal for this new attempt to separate anabolic from androgenic properties of androgens to facilitate marketing for muscle wasting and other selective effects of testosterone. .
  33. Handelsman DJ . Commentary: androgens and "anabolic steroids": the one-headed janus . Endocrinology . 152 . 5 . 1752–1754 . May 2011 . 21511988 . 10.1210/en.2010-1501 . Although development of the first nonsteroidal androgens (17, 18) as candidate selective AR modulators (19) raises hope of resurrecting this defunct term (20), prereceptor activation mechanisms cannot apply to nonsteroidal androgens, and the singular AR lacks a dual drive mechanism of the other paired sex steroid receptors. Consequently, it is not surprising that available knowledge (21) provides only slender hope that this failed, and probably false, dichotomy will now succeed through a renewed search guided by the same in vivo bioassay. .
  34. Hahamyan HA, Vasireddi N, Voos JE, Calcei JG . Social media's impact on widespread SARMs abuse . The Physician and Sportsmedicine . 51 . 4 . 291–293 . August 2023 . 35574698 . 10.1080/00913847.2022.2078679 . free .
  35. News: FDA In Brief: FDA warns against using SARMs in body-building products . 1 August 2019.
  36. Hackbart H, Cui X, Lee JS . Androgen receptor in breast cancer and its clinical implication . Translational Breast Cancer Research . 4 . 30 . October 2023 . 37946721 . 10632549 . 10.21037/tbcr-23-44 . free .
  37. Ma J, Chan JJ, Toh CH, Yap YS . Emerging systemic therapy options beyond CDK4/6 inhibitors for hormone receptor-positive HER2-negative advanced breast cancer . npj Breast Cancer . 9 . 1 . 74 . September 2023 . 37684290 . 10491615 . 10.1038/s41523-023-00578-3 .
  38. Jones A, Hwang DJ, Duke CB, He Y, Siddam A, Miller DD, Dalton JT . Nonsteroidal selective androgen receptor modulators enhance female sexual motivation . J Pharmacol Exp Ther . 334 . 2 . 439–48 . August 2010 . 20444881 . 2913771 . 10.1124/jpet.110.168880 .
  39. Miner JN, Chang W, Chapman MS, Finn PD, Hong MH, López FJ, Marschke KB, Rosen J, Schrader W, Turner R, van Oeveren A, Viveros H, Zhi L, Negro-Vilar A . An orally active selective androgen receptor modulator is efficacious on bone, muscle, and sex function with reduced impact on prostate . Endocrinology . 148 . 1 . 363–73 . January 2007 . 17023534 . 10.1210/en.2006-0793 .
  40. Gao W, Dalton JT . Ockham's razor and selective androgen receptor modulators (SARMs): are we overlooking the role of 5alpha-reductase? . Molecular Interventions . 7 . 1 . 10–13 . February 2007 . 17339601 . 2040232 . 10.1124/mi.7.1.3 .
  41. Book: Hohl A, Marcelli M . Androgen Receptor in Health and Disease . Hohl A . Testosterone . Springer International Publishing . Cham . 2023 . 978-3-031-31500-8 . 10.1007/978-3-031-31501-5_2 . 21–75 . https://books.google.com/books?id=GQTOEAAAQBAJ&pg=PA35 . Physiologically N/C interaction is indispensable because it delays ligand dissociation from the receptor, protects the ligand binding pocket, and prevents receptor degradation [118]. That N/C interaction is essential in AR physiology is demonstrated by the identification of AR LBD mutations resulting in androgen insensitivity syndromes (AIS) that disrupt N/C interaction without affecting the equilibrium binding affinity for the ligand [119, 120]..
  42. He B, Wilson EM . The NH(2)-terminal and carboxyl-terminal interaction in the human androgen receptor . Mol Genet Metab . 75 . 4 . 293–8 . April 2002 . 12051960 . 10.1016/S1096-7192(02)00009-4 .
  43. Dalton JT, Taylor RP, Mohler ML, Steiner MS . Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer . Current Opinion in Supportive and Palliative Care . 7 . 4 . 345–351 . December 2013 . 24189892 . 10.1097/SPC.0000000000000015 . Enobosarm was discovered in 2004 as a hyper-myoanabolic SARM that dissociated the anabolic from androgenic effects of AR in terms of potency (ED50) and efficacy (Emax) [29]. Levator ani muscle weight was increased to 131 and 136% of intact controls in intact and castrated (maintenance mode) rats, respectively, without significant increases in ventral prostate and seminal vesicles weights. Importantly, increases in levator ani muscle weight were associated with increases in muscle strength (soleus) in rats. Enobosarm also exerted in-vivo osteoanabolic effects alone and synergistically with alendronate in terms of bone density, strength, and structure [30], which was explained by in-vitro mechanistic studies that demonstrated antiresorptive (osteoclast inhibition) and anabolic (osteoblast differentiation) effects [31]. . 35120033 .
  44. Dubois V, Simitsidellis I, Laurent MR, Jardi F, Saunders PT, Vanderschueren D, Claessens F . Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage . Endocrinology . 156 . 12 . 4522–4533 . December 2015 . 26393303 . 10.1210/en.2015-1479 . free . 20.500.11820/072a494a-dfdc-4785-8f77-1a4e7e40e07a . free .
  45. Narayanan R, Coss CC, Yepuru M, Kearbey JD, Miller DD, Dalton JT . Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways . Molecular Endocrinology . 22 . 11 . 2448–2465 . November 2008 . 18801930 . 10.1210/me.2008-0160 . free .
  46. Kim J, Wu D, Hwang DJ, Miller DD, Dalton JT . The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators . The Journal of Pharmacology and Experimental Therapeutics . 315 . 1 . 230–239 . October 2005 . 15987833 . 10.1124/jpet.105.088344 . 30799845 .
  47. Narayanan R, Coss CC, Dalton JT . Development of selective androgen receptor modulators (SARMs) . Molecular and Cellular Endocrinology . 465 . 134–142 . April 2018 . 28624515 . 5896569 . 10.1016/j.mce.2017.06.013 .
  48. Xie Y, Tian Y, Zhang Y, Zhang Z, Chen R, Li M, Tang J, Bian J, Li Z, Xu X . Overview of the development of selective androgen receptor modulators (SARMs) as pharmacological treatment for osteoporosis (1998-2021) . European Journal of Medicinal Chemistry . 230 . 114119 . February 2022 . 35063736 . 10.1016/j.ejmech.2022.114119 . Similar to other N-arylpropionamide SARMs, in male rats treated for 14 days at 1 mg/day dose S-22 (17) exhibited increased levator ani muscle weight but significantly reduced prostate weight [...] . 245941791 .
  49. Le-Rademacher JG, Crawford J, Evans WJ, Jatoi A . Overcoming obstacles in the design of cancer anorexia/weight loss trials . Critical Reviews in Oncology/Hematology . 117 . 30–37 . September 2017 . 28807233 . 5561667 . 10.1016/j.critrevonc.2017.06.008 .
  50. Lambert CP . Should the FDA's criteria for the clinical efficacy of cachexia drugs be changed? Is Ostarine safe and effective? . Journal of Cachexia, Sarcopenia and Muscle . 12 . 3 . 531–532 . June 2021 . 33759397 . 8200429 . 10.1002/jcsm.12695 .
  51. Ramage MI, Skipworth RJ . The relationship between muscle mass and function in cancer cachexia: smoke and mirrors? . Current Opinion in Supportive and Palliative Care . 12 . 4 . 439–444 . December 2018 . 30138131 . 10.1097/SPC.0000000000000381 . free . 20.500.11820/2b90be5b-7682-4681-a85d-101d3abe3ed9 .
  52. Brooks A, Schumpp A, Dawson J, Andriello E, Fairman CM . Considerations for designing trials targeting muscle dysfunction in exercise oncology . Frontiers in Physiology . 14 . 1120223 . 2023 . 36866171 . 9972098 . 10.3389/fphys.2023.1120223 . free .
  53. Bhasin S, Jasuja R . Selective androgen receptor modulators as function promoting therapies . Current Opinion in Clinical Nutrition and Metabolic Care . 12 . 3 . 232–240 . May 2009 . 19357508 . 2907129 . 10.1097/MCO.0b013e32832a3d79 . At the doses that have been tested, the first generation SARMs induce modest gains in lean body mass in healthy volunteers, which are nowhere near the much greater gains in skeletal muscle mass reported with supraphysiological doses of testosterone. The modest gains of 1.0 to 1.5 kg in fat-free mass with first generation SARMs over 4–6 weeks should be contrasted with the 5–7 kg gains in fat-free mass with 300 and 600 mg doses of testosterone enanthate. However, it is possible that next generation of SARM molecules will have greater potency and selectivity than the first generation SARMs. .
  54. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen X, Yarasheski KE, Magliano L, Dzekov C, Dzekov J, Bross R, Phillips J, Sinha-Hikim I, Shen R, Storer TW . Testosterone dose-response relationships in healthy young men . American Journal of Physiology. Endocrinology and Metabolism . 281 . 6 . E1172–E1181 . December 2001 . 11701431 . 10.1152/ajpendo.2001.281.6.E1172 . The administration of the GnRH agonist plus graded doses of testosterone resulted in mean nadir testosterone concentrations of 253, 306, 542, 1,345, and 2,370 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Fat-free mass increased dose dependently in men receiving 125, 300, or 600 mg of testosterone weekly (change +3.4, 5.2, and 7.9 kg, respectively). The changes in fat-free mass were highly dependent on testosterone dose (P = 0.0001) and correlated with log testosterone concentrations (r = 0.73, P = 0.0001). . 2344757 .
  55. Kassem L, Shohdy KS, Makady NF, Salem DS, Ebrahim N, Eldaly M . Efficacy and Safety of Targeting Androgen Receptor in Advanced Breast Cancer: A Systematic Review . Current Cancer Therapy Reviews . 15 . 3 . 2019-11-16 . 10.2174/1573394714666180821145032 . 197–206 . 58234934 . It is worth noting that SARMs were initially developed to get benefit of their anabolic effect on muscle and bone without much harm to other tissues. One randomized controlled trial [28], recruited male and females with cancer and weight loss showed that enobosarm 1 mg or 3 mg was associated with significant increase in lean body mass compared to placebo. This led to another ongoing trial, with more selection, aiming to evaluate enobosarm (with higher doses 9 or 18 mg) effect on physical function and lean body mass of ER+/AR+ breast cancer patients (NCT02463032). Such additional action of this class of drugs carries major hope for patients with AR-positive advanced breast cancer, where weight loss, muscle weakness and physical inactivity represent a big challenge for the patient's quality of life (QOL)..
  56. Pan MM, Kovac JR . Beyond testosterone cypionate: evidence behind the use of nandrolone in male health and wellness . Transl Androl Urol . 5 . 2 . 213–9 . April 2016 . 27141449 . 4837307 . 10.21037/tau.2016.03.03 . free .
  57. Bond P, Smit DL, de Ronde W . Anabolic-androgenic steroids: How do they work and what are the risks? . Frontiers in Endocrinology . 13 . 1059473 . 2022 . 36644692 . 9837614 . 10.3389/fendo.2022.1059473 . free . Anabolic–androgenic steroids (AAS) are a class of natural and synthetic hormones that owe their name to their chemical structure (the steroid nucleus, see Figure 1) and the biological effects (anabolic and androgenic) they induce. Anabolic refers to the skeletal muscle-building properties of AAS, whereas androgenic refers to the induction and maintenance of male secondary sexual characteristics (which in principle includes the anabolic action, thereby rendering the term an oxymoron (1)). .
  58. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS . The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial . Journal of Cachexia, Sarcopenia and Muscle . 2 . 3 . 153–161 . September 2011 . 22031847 . 3177038 . 10.1007/s13539-011-0034-6 . The reductions in SHBG [with enobosarm] in men and women (−61% and −80%, respectively, at the 3-mg dose) exceed those observed in men treated with a 600-mg intramuscular testosterone enanthate (−31%) [41]. .
  59. Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R, Ulloor J, Zhang A, Eder R, Zientek H, Gordon G, Kazmi S, Sheffield-Moore M, Bhasin S . The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men . The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences . 68 . 1 . 87–95 . January 2013 . 22459616 . 4111291 . 10.1093/gerona/gls078 .
  60. Alén M, Rahkila P . Anabolic-androgenic steroid effects on endocrinology and lipid metabolism in athletes . Sports Medicine . 6 . 6 . 327–332 . December 1988 . 3068771 . 10.2165/00007256-198806060-00001 . 37898289 .
  61. Sinnecker G, Köhler S . Sex hormone-binding globulin response to the anabolic steroid stanozolol: evidence for its suitability as a biological androgen sensitivity test . The Journal of Clinical Endocrinology and Metabolism . 68 . 6 . 1195–1200 . June 1989 . 2723028 . 10.1210/jcem-68-6-1195 .
  62. Eisenfeld AJ, Aten RF . Estrogen receptors and androgen receptors in the mammalian liver . Journal of Steroid Biochemistry . 27 . 4–6 . 1109–1118 . 1987 . 3320548 . 10.1016/0022-4731(87)90197-x . Parenteral routes of sex steroid administration. Liver effects could also be diminished by using routes of administration other than oral. First pass effects would be avoided. [...] Although this discussion has focused predominantly on contraceptives, similar principles seem applicable for diminishing the liver side-effects of androgenic preparations. Thus, androgens should be selected which are likely to be metabolized on entering the hepatocyte and a parenteral route of administration may be preferable. Androgens which are not 17 alkylated might produce fewer liver side-effects than 17 alkylated derivatives judging from their relative effects on plasma protein levels [Z]. .
  63. Lax ER . Mechanisms of physiological and pharmacological sex hormone action on the mammalian liver . Journal of Steroid Biochemistry . 27 . 4–6 . 1119–1128 . 1987 . 3320549 . 10.1016/0022-4731(87)90198-1 . Androgen and oestrogen receptors have been demonstrated in mammalian liver, but since it is generally accepted that they are probably non-functional at endogenous steroid concentrations, it is not apparent how they mediate physiological influences on this organ. Nor is it certain to what extent pharmacological actions of sex hormones reflect overstimulation of physiological routes or whether alternative mechanisms become available once threshold values have been reached. [...] Many of the dangers inherent in synthetic androgen or anabolic steroid therapy may be due less to the androgenic characteristics than to the structural modifications performed to prevent [hepatic] inactivation (e.g. insertion of an acetylene group at 17α). .
  64. Lim E, Tarulli G, Portman N, Hickey TE, Tilley WD, Palmieri C . Pushing estrogen receptor around in breast cancer . Endocrine-Related Cancer . 23 . 12 . T227–T241 . December 2016 . 27729416 . 10.1530/ERC-16-0427 . free .
  65. Thevis M, Kuuranne T, Geyer H, Schänzer W . Annual banned-substance review: analytical approaches in human sports drug testing . Drug Testing and Analysis . 9 . 1 . 6–29 . January 2017 . 27885819 . 10.1002/dta.2139 . New information on elimination kinetics and potential drug-drug interactions of the SARM GTx-024 (Enobosarm, Ostarine, S-22, MK-2866) was presented by Coss et al. indicating maximum plasma concentrations of the intact drug and its glucuronic acid conjugate of ca. 60 and 100 ng/mL, respectively, reached between 1 and 2 h following an oral dose of 3 mg.[85] The CYP3A4 inhibitor itraconazole did not affect pharmacokinetic parameters of GTx-024, while the CYP3A4 inducer rifampin reduced maximum plasma concentrations significantly. Conversely, the UGT-inhibitor probenecid increased levels of both GTx-024 and its glucuronide. .
  66. Book: 10.1007/978-3-642-30726-3_24 . Pharmacology and Clinical Use of Sex Steroid Hormone Receptor Modulators . Sex and Gender Differences in Pharmacology . Handbook of Experimental Pharmacology . 2013 . Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T . 214 . 214 . 543–587 . 23027466 . 978-3-642-30725-6 . Both male (androgens) and female (oestrogens, progestins) sex hormones are steroid hormones. [...] these compounds have several properties in common: they are small, very lipophilic molecules with the potential to freely diffuse through cell membranes. Their receptors also share important features: in all animals, the receptors for steroid hormones are part of the nuclear receptor superfamily of ligand-triggered transcription factors (Mangelsdorf et al. 1995). Unlike membrane receptors that trigger intracellular signalling pathways, these receptors work by influencing gene expression in the cell..
  67. Yoon JH, Kwon KS . Receptor-Mediated Muscle Homeostasis as a Target for Sarcopenia Therapeutics . Endocrinology and Metabolism . 36 . 3 . 478–490 . June 2021 . 34218646 . 8258343 . 10.3803/EnM.2021.1081 . Intracellular receptors account for 10% to 15% of drugs on the market, including drugs that act on cytoplasmic receptors such as androgen receptors (ARs), estrogen receptors, progesterone receptors, and glucocorticoid receptors, and other drugs that act on nuclear receptors such as vitamin D receptor (VDR), thyroid hormone receptors, and peroxisome proliferator-activated receptors [27-30]. Ligands of intracellular receptors include lipophilic vitamins, steroid hormones, and small chemicals such as hydrogen peroxide and nitric oxide, which require membrane permeability for intracellular delivery [30,31]. There are several barriers to the intracellular delivery of therapeutic drugs, such as lysosome degradation and active efflux out of the cell. Lowmolecular-weight lipophilic compounds can diffuse directly into cells, whereas high-molecular-weight compounds usually need membrane transporters or endocytosis [32,33]. Proper entry into the cell and subsequent contact with the exact target lead to better therapeutic effects and reduce undesirable adverse effects [34]. .
  68. Mohd Fauzi F, Koutsoukas A, Cunningham A, Gallegos A, Sedefov R, Bender A . Computer-aided (in silico) approaches in the mode-of-action analysis and safety assessment of ostarine and 4-methylamphetamine . Human Psychopharmacology . 28 . 4 . 365–378 . July 2013 . 23881885 . 10.1002/hup.2322 . 22800581 .
  69. Kim J, Wang R, Veverka KA, Dalton JT . Absorption, distribution, metabolism and excretion of the novel SARM GTx-024 [(S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-3-(4-cyanophenoxy)-2-hydroxy-2-methylpropanamide] in rats . Xenobiotica; the Fate of Foreign Compounds in Biological Systems . 43 . 11 . 993–1009 . November 2013 . 24074268 . 10.3109/00498254.2013.788233 . 6545249 .
  70. Coss CC, Jones A, Dalton JT . Pharmacokinetic drug interactions of the selective androgen receptor modulator GTx-024(Enobosarm) with itraconazole, rifampin, probenecid, celecoxib and rosuvastatin . Investigational New Drugs . 34 . 4 . 458–467 . August 2016 . 27105861 . 10.1007/s10637-016-0353-8 . 24200291 .
  71. Web site: Enobosarm . PubChem . U.S. National Library of Medicine .
  72. Web site: Enobosarm . DrugBank .
  73. Gao W, Bohl CE, Dalton JT . Chemistry and structural biology of androgen receptor . Chemical Reviews . 105 . 9 . 3352–3370 . September 2005 . 16159155 . 2096617 . 10.1021/cr020456u .
  74. Chen J, Kim J, Dalton JT . Discovery and therapeutic promise of selective androgen receptor modulators . Molecular Interventions . 5 . 3 . 173–188 . June 2005 . 15994457 . 2072877 . 10.1124/mi.5.3.7 .
  75. Book: Androgen Physiology, Pharmacology, Use and Misuse . Endotext [Internet] . South Dartmouth (MA) . MDText.com, Inc. . 5 October 2020 . 25905231 . Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, Handelsman DJ .
  76. Hwang DJ, He Y, Ponnusamy S, Mohler ML, Thiyagarajan T, McEwan IJ, Narayanan R, Miller DD . New Generation of Selective Androgen Receptor Degraders: Our Initial Design, Synthesis, and Biological Evaluation of New Compounds with Enzalutamide-Resistant Prostate Cancer Activity . Journal of Medicinal Chemistry . 62 . 2 . 491–511 . January 2019 . 30525603 . 10.1021/acs.jmedchem.8b00973 . free . 54472127 . 2164/13357 .
  77. Corona G, Rastrelli G, Vignozzi L, Maggi M . Emerging medication for the treatment of male hypogonadism . Expert Opinion on Emerging Drugs . 17 . 2 . 239–259 . June 2012 . 22612692 . 10.1517/14728214.2012.683411 . 22068249 .
  78. Holderbaum A . April 2020 . Ph.D. . Emerging anabolic drugs: investigation of the in vitro and in vivo metabolism of selective androgen receptor modulators. . Queen's University Belfast . United Kingdom .
  79. Ricci F, Buzzatti G, Rubagotti A, Boccardo F . Safety of antiandrogen therapy for treating prostate cancer . Expert Opinion on Drug Safety . 13 . 11 . 1483–1499 . November 2014 . 25270521 . 10.1517/14740338.2014.966686 . Bone-sparing effects of antiandrogen monotherapy might be due to selective AR modulators, tissue-specific and androgen-responsive, not affected by antiandrogen therapy, resulting in testosterone still being active in bone during non-steroidal antiandrogen administration [90]. . 207488100 .
  80. Allan G, Lai MT, Sbriscia T, Linton O, Haynes-Johnson D, Bhattacharjee S, Dodds R, Fiordeliso J, Lanter J, Sui Z, Lundeen S . A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats . The Journal of Steroid Biochemistry and Molecular Biology . 103 . 1 . 76–83 . January 2007 . 17049844 . 10.1016/j.jsbmb.2006.07.006 . 25283876 .
  81. Wadhwa VK, Weston R, Parr NJ . Bicalutamide monotherapy preserves bone mineral density, muscle strength and has significant health-related quality of life benefits for osteoporotic men with prostate cancer . BJU International . 107 . 12 . 1923–1929 . June 2011 . 20950306 . 10.1111/j.1464-410X.2010.09726.x . 205543615 .
  82. Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y, Hwang DJ, Dalton JT, Miller DD . Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit . Journal of Medicinal Chemistry . 52 . 12 . 3597–3617 . June 2009 . 19432422 . 10.1021/jm900280m . Readers are cautioned to note that the name Ostarine is often mistakenly linked to the chemical structure of 8, which is also known as andarine. The chemical structure of Ostarine has not been publicly disclosed. The authors are unable to provide additional information. .
  83. Zhang X, Sui Z . Deciphering the selective androgen receptor modulators paradigm . Expert Opinion on Drug Discovery . 8 . 2 . 191–218 . February 2013 . 23231475 . 10.1517/17460441.2013.741582 . The structure and name of Ostarine (GTx-024, MK-2866, Enobosarm, S-22) were disclosed by the USAN Council in November 2011 to establish it as a first member of a new class of drugs furthest in clinical development (Structure 2 in Scheme 1). . 2584722 .
  84. Dart DA, Kandil S, Tommasini-Ghelfi S, Serrano de Almeida G, Bevan CL, Jiang W, Westwell AD . Novel Trifluoromethylated Enobosarm Analogues with Potent Antiandrogenic Activity In Vitro and Tissue Selectivity In Vivo . Molecular Cancer Therapeutics . 17 . 9 . 1846–1858 . September 2018 . 29895558 . 10.1158/1535-7163.MCT-18-0037 . free .
  85. Pertusati F, Ferla S, Bassetto M, Brancale A, Khandil S, Westwell AD, McGuigan C . A new series of bicalutamide, enzalutamide and enobosarm derivatives carrying pentafluorosulfanyl (SF5) and pentafluoroethyl (C2F5) substituents: Improved antiproliferative agents against prostate cancer . European Journal of Medicinal Chemistry . 180 . 1–14 . October 2019 . 31288149 . 10.1016/j.ejmech.2019.07.001 . 195872311 .
  86. Dalton JT, Mukherjee A, Zhu Z, Kirkovsky L, Miller DD . Discovery of nonsteroidal androgens . Biochemical and Biophysical Research Communications . 244 . 1 . 1–4 . March 1998 . 9514878 . 10.1006/bbrc.1998.8209 .
  87. WO . 2005120483 . Dalton JT, Mille DD, Veverka KA . University of Tennessee Research Foundation . 22 December 2005 . Selective androgen receptor modulators and methods of use thereof.
  88. Negro-Vilar A . Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium . The Journal of Clinical Endocrinology and Metabolism . 84 . 10 . 3459–3462 . October 1999 . 10522980 . 10.1210/jcem.84.10.6122 .
  89. He Y, Yin D, Perera M, Kirkovsky L, Stourman N, Li W, Dalton JT, Miller DD . Novel nonsteroidal ligands with high binding affinity and potent functional activity for the androgen receptor . European Journal of Medicinal Chemistry . 37 . 8 . 619–634 . August 2002 . 12161060 . 10.1016/s0223-5234(02)01335-1 .
  90. Yin D, Gao W, Kearbey JD, Xu H, Chung K, He Y, Marhefka CA, Veverka KA, Miller DD, Dalton JT . Pharmacodynamics of selective androgen receptor modulators . The Journal of Pharmacology and Experimental Therapeutics . 304 . 3 . 1334–1340 . March 2003 . 12604714 . 10.1124/jpet.102.040840 . 14724811 .
  91. Perera MA . The pharmacology, pharmacokinetics and metabolism of a novel nonsteroidal selective androgen receptor modulator . 2003 . . 56700020 .
  92. News: Nagle M . Merck flexes muscle with GTx deal. Outsourcing Pharma. 7 November 2007.
  93. News: Swanekamp K . Merck And GTx Go Their Separate Ways. Forbes. 15 March 2010.
  94. News: Enobosarm fails endpoints in Ph III study. The Pharma Letter. 20 August 2013.
  95. News: Sheffield M . Steiner resigns from GTx. Memphis Business Journal. April 4, 2014.
  96. News: Garde D . GTx's CEO finds the door as the company moves on from a PhIII failure . FierceBiotech. 4 April 2014.
  97. News: GTx begins Phase II trial of enobosarm to treat women with stress urinary incontinence . https://web.archive.org/web/20180622164656if_/https://www.drugdevelopment-technology.com/news/newsgtx-begins-phase-ii-trial-of-enobosarm-to-treat-women-with-stress-urinary-incontinence-4785216/ . 22 June 2018 . Drug Development Technology. 14 January 2016.
  98. News: GTx's Enobosarm Fails Phase II Trial in Stress Urinary Incontinence; Stock Plunges 90%+ . Genetic Engineering & Biotechnology News . 21 September 2018 . 1 August 2019.
  99. Web site: Pelosci A . 10 January 2022 . FDA Grants Fast Track Designation to Enobosarm in AR+, ER+, HER2- Metastatic Breast Cancer . Cancer Network . 27 August 2023 . en .
  100. Web site: Veru Submits IND Application to FDA for the Development of Enobosarm to Prevent Muscle Loss While Augmenting Fat Loss in Combination with GLP-1 Drugs for Weight Loss . 8 January 2024 . BioSpace .
  101. WHO Drug Information . 27 . 1 . 2013 . Recommended INN: List 69 International Nonproprietary Names for Pharmaceutical Substances (INN) . Enobosarm: (2S)-3-(4-cyanophenoxy)-N-[4-cyano-3-(trifluoromethyl)phenyl]-2-hydroxy-2-methylpropanamide .
  102. Web site: Why there are more gym supplements in a London fatberg than cocaine and MDMA. . Saner E . The Guardian . 24 April 2018 .
  103. Thevis M, Kohler M, Schlörer N, Kamber M, Kühn A, Linscheid MW, Schänzer W . Mass spectrometry of hydantoin-derived selective androgen receptor modulators . Journal of Mass Spectrometry . 43 . 5 . 639–650 . May 2008 . 18095383 . 10.1002/jms.1364 . 2008JMSp...43..639T .
  104. Thevis M, Kohler M, Thomas A, Maurer J, Schlörer N, Kamber M, Schänzer W . Determination of benzimidazole- and bicyclic hydantoin-derived selective androgen receptor antagonists and agonists in human urine using LC-MS/MS . Analytical and Bioanalytical Chemistry . 391 . 1 . 251–261 . May 2008 . 18270691 . 10.1007/s00216-008-1882-6 . 206899531 .
  105. News: Dynamic Technical Formulations, LLC. Issues a Voluntary Nationwide Recall of Tri-Ton Due to the Presence of Andarine and Ostarine . U.S. Food & Drug Administration . May 19, 2017.
  106. Web site: NSAC: Sean O'Malley can fight at UFC 248 in March after serving suspension. Raimondi M . ESPN. January 22, 2020. June 9, 2020.
  107. Web site: Needelman J . 14 September 2020 . Clemson lineman suspended by ncaa for positive ostarine test opens up for first time . November 13, 2020.
  108. News: Bieler D . Failed PED test has a highly paid offensive lineman sharing polygraph results . 25 July 2019 . Washington Post . 25 July 2019 . One of the NFL’s highest-paid offensive linemen claimed Wednesday that he did not knowingly take a banned substance he says got him a four-game suspension — and he took a polygraph test in an attempt to prove it..
  109. UCI statement concerning Matteo Spreafico . Union Cycliste Internationale . 4 May 2021 .
  110. Web site: Tandara é suspensa por "potencial violação" do antidoping e está fora das Olimpíadas . Tandara is suspended for “potential anti-doping violation” and is out of the Olympics . Portuguese . 6 August 2021 . globo.com .
  111. Web site: Tokyo Olympics: Team GB 4x100m relay silver medallist CJ Ujah suspended for suspected doping violation . 12 August 2021 . Sky News .
  112. Web site: CJ Ujah: Great Britain lose Tokyo Olympics relay medal after doping violation . BBC . 18 February 2022.
  113. Web site: Public Disclosure of Disposition of Anti-Doping Matter Under Rule 14.3.2 – Chijindu Ujah (GBR) . Athletics Integrity Unit . 10 October 2022 . 29 September 2022.
  114. Web site: In the Matter of the Horse Racing License Act, 2015, S.0.2015,C.38,Sched.9; And in the Matter of Robert Gerl. 2 June 2022.
  115. Web site: Cardinals WR DeAndre Hopkins still hopes to reduce six-game suspension . NFL.com . 23 June 2022.
  116. Web site: Amir Khan banned for two years after anti-doping test reveals presence of prohibited substance . BBC.co.uk . 4 April 2023.
  117. Web site: Coppinger . Mike . Boxer Garcia tests positive for banned substance . ESPN.com . 2 May 2024 . 17 August 2024.