EIF4E explained

Eukaryotic translation initiation factor 4E, also known as eIF4E, is a protein that in humans is encoded by the EIF4E gene.[1] [2]

Structure and function

Most eukaryotic cellular mRNAs are blocked at their 5'-ends with the 7-methyl-guanosine five-prime cap structure, m7GpppX (where X is any nucleotide). This structure is involved in several cellular processes including enhanced translational efficiency, splicing, mRNA stability, and RNA nuclear export. eIF4E is a eukaryotic translation initiation factor involved in directing ribosomes to the cap structure of mRNAs as well as other steps in RNA metabolism that require cap-binding. It is a 24-kD polypeptide that exists as both a free form and as part of the eIF4F pre-initiation complex.[3] Many cellular mRNAs require eIF4E in order to be translated into protein. The eIF4E polypeptide is considered by some to be the rate-limiting component of the eukaryotic translation apparatus and is involved in the mRNA-ribosome binding step of eukaryotic protein synthesis.

The other subunits of eIF4F are a 47-kD polypeptide, termed eIF4A,[4] that possesses ATPase and RNA helicase activities, and a 220-kD scaffolding polypeptide, eIF4G.[5] [6] [7]

Some viruses cut eIF4G in such a way that the eIF4E binding site is removed and the virus is able to translate its proteins without eIF4E. Also some cellular proteins, the most notable being heat shock proteins, do not require eIF4E in order to be translated. Both viruses and cellular proteins achieve this through an internal ribosome entry site in the RNA or through other RNA translation mechanisms such as those going through eIF3d.[8] [9]

eIF4E plays roles outside of translation and other cap-binding proteins can engage in cap-dependent translation in an eIF4E-independent manner including factors such as eIF3D, eIF3I, PARN, the nuclear cap-binding complex CBC.[10] [11] [8] [12] [13] [9] [14] Many of these appear to be dependent on both specific features of transcripts as well as cellular context.

eIF4E is found in the nucleus of many mammalian cell types as well as in other species including yeast, drosophila and humans.[15] [16] [17] [18] [19] [20] [21] [22] eIF4E is found in nuclear bodies a subset of which colocalize with PML nuclear bodies, and eIF4E is additionally found diffusely in parts of the nucleoplasm in mammalian.[19] [17] [20] [21] [23] [24] [22] In the nucleus, eIF4E plays well defined roles in the export of selected RNAs which contributes to its oncogenic phenotypes.[25] [17] [20] [21] [23] [24] [26] [27] [28] [29] This relies on the ability of eIF4E to bind the m7G cap of RNAs and the presence of the 50 nucleotide eIF4E sensitivity element (4ESE) in the 3’UTR of sensitive transcripts; although other elements may also play a role. This form of export relies on the CRM1/XPO1 pathway.[17] [20] [23] [30] [31] [22] Nuclear eIF4E has been shown to play other roles in RNA processing including in m7G capping, alternative polyadenylation and splicing.[32] [33] [34]

Increased nuclear accumulation of eIF4E as well as increased eIF4E-dependent RNA export, m7G capping and splicing of selected transcripts is characteristic of high-eIF4E AML patient samples.[21] [26] [34] [33] RNAs are selected based on USER codes, or cis-acting elements, within their RNAs for specific levels of RNA processing; thus not all transcripts are sensitive to all levels of regulation (including translation).[31] [35] [14] For its RNA export function, eIF4E directly binds to the leucine rich pentatricopeptide repeat protein (LRPPRC) which directly binds the dorsal surface of eIF4E and simultaneously to the 4ESE RNA thereby acting as a platform for assembly for the RNA export complex.[22] [31] The current model is then LRPPRC binds to CRM1/XPO1 to engage the nuclear pore and traffic the 4ESE RNA to the cytoplasm.[24] [22] [31] In all, the nuclear functions of eIF4E can have potent impacts on the proteome allowing eIF4E to both re-write the message as well as to increase production of proteins based on increased accumulation in the cytoplasm due to increased export as well as to increased number of ribosomes per transcript in some cases. Its multiple roles in RNA processing require its association of RNAs through the m7G cap, and thus eIF4E can be considered a cap-chaperone protein.

Regulation

Since eIF4E is an initiation factor that is relatively low in abundance, eIF4E can be controlled at multiple levels.[36] [14] Regulation of eIF4E may be achieved at the levels of transcription, RNA stability phosphorylation, subcellular localization and partner proteins.[37]

a. Regulation of eIF4E by Gene Expression and RNA stability

The mechanisms responsible for eIF4E transcriptional regulation are not entirely understood. However, several reports suggest a correlation between myc levels and eIF4E mRNA levels during the cell cycle.[38] The basis of this relationship was further established by the characterization of two myc-binding sites (CACGTG E box repeats) in the promoter region of the eIF4E gene.[39] This sequence motif is shared with other in vivo targets for myc and mutations in the E box repeats of eIF4E inactivated the promoter region, thereby diminishing its expression.

Recent studies shown that eIF4E levels can be regulated at transcriptional level by NFkB and C/EBP.[40] [41] Transduction of primary AML cells with IkB-SR resulted not only in reduction of eIF4E mRNA levels, but also re-localization of eIF4E protein.[21] eIF4E mRNA stability are also regulated by HuR and TIAR proteins.[42] [43] eIF4E gene amplification has been observed in subset of head and neck and breast cancer specimens.[44]

b. Regulation of eIF4E by Phosphorylation

Stimuli such as hormones, growth factors, and mitogens that promote cell proliferation also enhance translation rates by phosphorylating eIF4E.[45] Although eIF4E phosphorylation and translation rates are not always correlated, consistent patterns of eIF4E phosphorylation are observed throughout the cell cycle; wherein low phosphorylation is seen during G0 and M phase and wherein high phosphorylation is seen during G1 and S phase.[46] This evidence is further supported by the crystal structure of eIF4E which suggests that phosphorylation on serine residue 209 may increase the affinity of eIF4E for capped mRNA.

eIF4E phosphorylation is also related to its ability to suppress RNA export and its oncogenic potential as first shown in cell lines.[47]

c. Regulation of eIF4E by Partner Proteins

Assembly of the eIF4F complex is inhibited by proteins known as eIF4E-binding proteins (4E-BPs), which are small heat-stable proteins that block cap-dependent translation. Non-phosphorylated 4E-BPs interact strongly with eIF4E thereby preventing translation; whereas phosphorylated 4E-BPs bind weakly to eIF4E and thus do not interfere with the process of translation.[48] Furthermore, binding of the 4E-BPs inhibits phosphorylation of Ser209 on eIF4E.[49] Of note, 4E-BP1 is found in both the nucleus and the cytoplasm, indicating that it likely modulates nuclear eIF4Es functions of eIF4E as well.[50] A recent study showed that 4E-BP3 regulated eIF4E dependent mRNA nucleo-cytoplasmic export.[51] There are also many cytoplasmic regulators of eIF4E that bind to the same site as 4E-BP1.

Many other partner proteins has been found that can both stimulate or repress eIF4E activity, such as  homeodomain containing proteins, including HoxA9, Hex/PRH, Hox 11, Bicoid, Emx-2 and Engrailed 2.[52] [20] [53] [54] [55] While HoxA9 promotes mRNA export and translation activities of eIF4E, Hex/PRH inhibits nuclear functions of eIF4E.[21] [56] [57] The RNA helicase DDX3 directly binds with eIF4E, modulates translation, and has potential functions in P-bodies and mRNA export.[58] [22]

RING domains also bind eIF4E. The promyelocytic leukemia protein PML is a potent suppressor of both the nuclear RNA export and oncogenic activities of eIF4E whereby the RING domain of PML directly binds eIF4E on its dorsal surface suppressing eIF4E's oncogenic activity; and moreover a subset of PML and eIF4E nuclear bodies co-localize.[59] [17] [60] [19] [20] [24] RNA-eIF4E complexes are never observed in PML bodies consistent with the observation that PML suppresses the m7G cap binding function of eIF4E.[17] [60] [24] Structural studies show that a related arenavirus RING finger protein, Lassa Fever Z protein, can similarly bind eIF4E on the dorsal surface.[60] [61] [62]

eIF4E nuclear entry is mediated by its direct interactions with Importin 8 where Importin 8 associates with the m7G cap-binding site of eIF4E.[28] Indeed, reduction in Importin 8 levels reduce the oncogenic potential of eIF4E overexpressing cells and its RNA export function. Importin 8 binds to the cap-binding site of eIF4E and is competed by excess m7G cap analogues as observed by NMR. eIF4E also stimulates the RNA export of Importin 8 RNA thereby producing more Importin 8 protein. There may be additional importins that play this role depending on cell type. Although an initial study suggested that the eIF4E transporter protein 4E-T (eIF4ENIF1) facilitated nuclear entry, later studies showed that this factor rather alters the localization of eIF4E to cytoplasmic processing bodies (P-bodies) and repress translation.[63]

Potyvirus viral protein genome linked (VPg) were found to directly bind eIF4E in its cap-binding site. VPg is covalently linked to its genomic RNA and this interaction allows VPg to act as a "cap."[64] [65] [12] [66] The potyvirus VPg has no sequence or structural homology to other VPg's such as those from poliovirus. In vitro, VPg-RNA conjugates were translated with similar efficiency to m7G-capped RNAs indicating that VPg binds eIF4E and engages the translation machinery; while free VPg (in the absence of conjugated RNA) successfully competes for all the cap-dependent activities of eIF4E in the cell inhibiting translation and  RNA export.[66]

d. Regulation of eIF4E cellular localization

Several factors that regulate eIF4E functions also modulate the subcellular localization of eIF4E. For instance, overexpression of PRH/Hex leads to cytoplasmic retention of eIF4E, and thus loss of its mRNA export activity and suppression of transformation.[20] PML overexpression leads to sequestration of eIF4E to nuclear bodies with PML and decrease of eIF4E nuclear bodies containing RNA, which correlates to repressed eIF4E dependent mRNA export and can be modulated by stress.[17] [19] [21] Overexpression of LRPPRC reduces eIF4E’s co-localization with PML in the nucleus and leads to increased mRNA export activity of eIF4E. As discussed above, Importin 8 brings eIF4E into the nucleus and its overexpression stimulates the RNA export and oncogenic transformation activities of eIF4E in cell lines. Transduction of primary AML cells with IkB-SR resulted not only in reduction of eIF4E mRNA levels, but also re-localization of eIF4E protein.[21]

The Role of eIF4E in Cancer

The role of eIF4E in cancer was established after Lazaris-Karatzas et al. made the discovery that over-expressing eIF4E causes tumorigenic transformation of fibroblasts.[67] Since this initial observation, numerous groups have recapitulated these results in different cell lines.[68] As a result, eIF4E activity is implicated in several cancers including cancers of the breast, lung, and prostate. In fact, transcriptional profiling of metastatic human tumors has revealed a distinct metabolic signature wherein eIF4E is known to be consistently up-regulated.[69]

eIF4E levels are increased in many cancers including acute myeloid leukemia (AML), multiple myeloma, infant ALL, diffuse large B-cell lymphoma, breast cancer, prostate cancer, head and neck cancer and  its elevation generally correlates with poor prognosis.[26] [70] [71] [72] [73] [74] [75] [76] In many of these cancers such as AML, eIF4E is enriched in nuclei and several of eIF4E’s activities are found to be elevated in primary patient specimens, including capping, splicing, RNA export, and translation.

In the first clinical trials targeting eIF4E, old antiviral drug ribavirin was used as a m7G cap competitor which had substantial activity in cancer cell lines and animal models associated with dysregulated eIF4E.[77] [78] [71] [27] [79] [80] [81] [74] [82] [83] [84] [85] [86] [76] In the first trial to ever target eIF4E, ribavirin monotherapy was demonstrated to inhibit eIF4E activity leading to objective clinical responses including complete remissions in AML patients.[26] Interestingly, relocalization of eIF4E from the nucleus to the cytoplasm correlated with clinical remissions indicative of the relevance of its nuclear activities to disease progression.[26] Subsequent ribavirin trials in AML in combination with antileukemic drugs again showed objective clinical responses including remissions and molecular targeting of eIF4E.[72] [87]  Clinical responses correlated with reduced nuclear eIF4E and clinical relapse with re-emergence of eIF4E nuclear eIF4E and its RNA export activity in these AML studies. Other studies used ribavirin in combination showed similar promising results in  head and neck cancer.[75] Ribavirin impairs all of the activities of eIF4E examined to date (splicing, capping, RNA export and translation).  Thus, eIF4E has been successfully therapeutically targetable in humans; however drug resistance to ribavirin is an emergent problem to long term disease control.[80] [72] [87]

eIF4E has also been targeted by antisense oligonucleotides which were very potent in mouse models of prostate cancer,[88] but in monotherapy trials in humans did not provide clinical benefit likely due to the inefficiency of reducing eIF4E levels in humans compared to mice.[89] There is also an allosteric inhibitor of eIF4E which binds between the cap-binding site and the dorsal surface that is used experimentally.[90]

FMRP represses translation through EIF4E binding

Fragile X mental retardation protein (FMR1) acts to regulate translation of specific mRNAs through its binding of eIF4E. FMRP acts by binding CYFIP1, which directly binds eIF4e at a domain that is structurally similar to those found in 4E-BPs including EIF4EBP3, EIF4EBP1, and EIF4EBP2. The FMRP/CYFIP1 complex binds in such a way as to prevent the eIF4E-eIF4G interaction, which is necessary for translation to occur. The FMRP/CYFIP1/eIF4E interaction is strengthened by the presence of mRNA(s). In particular, BC1 RNA allows for an optimal interaction between FMRP and CYFIP1.[91] RNA-BC1 is a non-translatable, dendritic mRNA, which binds FMRP to allow for its association with a specific target mRNA. BC1 may function to regulate FMRP and mRNA interactions at synapse(s) through its recruitment of FMRP to the appropriate mRNA.[92]

In addition, FMRP may recruit CYFIP1 to specific mRNAs in order to repress translation. The FMRP-CYFIP1 translational inhibitor is regulated by stimulation of neuron(s). Increased synaptic stimulation resulted in the dissociation of eIF4E and CYFIP1, allowing for the initiation of translation.

Interactions

EIF4E has been shown to interact with:

. Other direct interactors: PML;[17] [60] arenavirus Z protein;[60] [59] [61] [62] Importin 8;[28] potyvirus VPg protein,[66] LRPPRC,[31] [22] RNMT[113] and others.

See also

Further reading

External links

Notes and References

  1. Pelletier J, Brook JD, Housman DE . Assignment of two of the translation initiation factor-4E (EIF4EL1 and EIF4EL2) genes to human chromosomes 4 and 20 . Genomics . 10 . 4 . 1079–82 . August 1991 . 1916814 . 10.1016/0888-7543(91)90203-Q .
  2. Jones RM, MacDonald ME, Branda J, Altherr MR, Louis DN, Schmidt EV . Assignment of the human gene encoding eukaryotic initiation factor 4E (EIF4E) to the region q21-25 on chromosome 4 . Somatic Cell and Molecular Genetics . 23 . 3 . 221–223 . May 1997 . 9330633 . 10.1007/BF02721373 . 10683455 .
  3. Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ . Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. . Proceedings of the National Academy of Sciences of the United States of America . 76 . 9 . 4345–9 . September 1979 . 291969 . 10.1073/pnas.76.9.4345 . 411571. 1979PNAS...76.4345S . free .
  4. Hutchins AP, Roberts GR, Lloyd CW, Doonan JH . In vivo interaction between CDKA and eIF4A: a possible mechanism linking translation and cell proliferation . FEBS Lett. . 556 . 1–3 . 91–4 . 2004 . 14706832 . 10.1016/S0014-5793(03)01382-6 . 35343626 . free .
  5. Hsieh AC, Ruggero D . Targeting Eukaryotic Translation Initiation Factor 4E (eIF4E) in Cancer . Clinical Cancer Research . 16 . 20 . 4914–4920 . 11 August 2010 . 20702611 . 10.1158/1078-0432.CCR-10-0433 . 7539621 . free .
  6. Rychlik W, Domier LL, Gardner PR, Hellmann GM, Rhoads RE . Amino acid sequence of the mRNA cap-binding protein from human tissues . Proceedings of the National Academy of Sciences of the United States of America . 84 . 4 . 945–9 . February 1987 . 3469651 . 10.1073/pnas.84.4.945 . 304336. 1987PNAS...84..945R . free .
  7. Web site: Entrez Gene: eIF4E Eukaryotic translation initiation factor 4E .
  8. de la Parra . Columba . Ernlund . Amanda . Alard . Amandine . Ruggles . Kelly . Ueberheide . Beatrix . Schneider . Robert J. . 2018-08-03 . A widespread alternate form of cap-dependent mRNA translation initiation . Nature Communications . en . 9 . 1 . 3068 . 10.1038/s41467-018-05539-0 . 2041-1723 . 6076257 . 30076308. 2018NatCo...9.3068D .
  9. Lee . Amy S. Y. . Kranzusch . Philip J. . Doudna . Jennifer A. . Cate . Jamie H. D. . 2016-08-04 . eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation . Nature . en . 536 . 7614 . 96–99 . 10.1038/nature18954 . 0028-0836 . 5003174 . 27462815. 2016Natur.536...96L .
  10. Bukhari . Syed I.A. . Truesdell . Samuel S. . Lee . Sooncheol . Kollu . Swapna . Classon . Anthony . Boukhali . Myriam . Jain . Esha . Mortensen . Richard D. . Yanagiya . Akiko . Sadreyev . Ruslan I. . Haas . Wilhelm . Vasudevan . Shobha . March 2016 . A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence . Molecular Cell . en . 61 . 5 . 760–773 . 10.1016/j.molcel.2016.02.013 . 4811377 . 26942679.
  11. Kumar . Parimal . Hellen . Christopher U.T. . Pestova . Tatyana V. . 2016-07-01 . Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs . Genes & Development . en . 30 . 13 . 1573–1588 . 10.1101/gad.282418.116 . 0890-9369 . 4949329 . 27401559.
  12. Borden . Katherine L.B. . Volpon . Laurent . 2020-09-01 . The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery . RNA Biology . en . 17 . 9 . 1239–1251 . 10.1080/15476286.2020.1766179 . 1547-6286 . 7549709 . 32496897.
  13. Rambout . Xavier . Maquat . Lynne E. . 2020-09-01 . The nuclear cap-binding complex as choreographer of gene transcription and pre-mRNA processing . Genes & Development . en . 34 . 17–18 . 1113–1127 . 10.1101/gad.339986.120 . 0890-9369 . 7462061 . 32873578.
  14. Mars . Jean-Clement . Ghram . Mehdi . Culjkovic-Kraljacic . Biljana . Borden . Katherine L. B. . 2021-12-08 . The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation . Cancers . en . 13 . 24 . 6185 . 10.3390/cancers13246185 . 2072-6694 . 8699206 . 34944805 . free .
  15. Lejbkowicz . F . Goyer . C . Darveau . A . Neron . S . Lemieux . R . Sonenberg . N . 1992-10-15 . A fraction of the mRNA 5' cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. . Proceedings of the National Academy of Sciences . en . 89 . 20 . 9612–9616 . 10.1073/pnas.89.20.9612 . 0027-8424 . 50182 . 1384058 . 1992PNAS...89.9612L . free .
  16. Dostie . Josée . Lejbkowicz . Flavio . Sonenberg . Nahum . 2000-01-24 . Nuclear Eukaryotic Initiation Factor 4e (Eif4e) Colocalizes with Splicing Factors in Speckles . Journal of Cell Biology . en . 148 . 2 . 239–246 . 10.1083/jcb.148.2.239 . 0021-9525 . 2174286 . 10648556.
  17. Cohen . N. . 2001-08-15 . PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA . The EMBO Journal . 20 . 16 . 4547–4559 . 10.1093/emboj/20.16.4547 . 125576 . 11500381.
  18. Iborra . Francisco J. . Jackson . Dean A. . Cook . Peter R. . 2001-08-10 . Coupled Transcription and Translation Within Nuclei of Mammalian Cells . Science . en . 293 . 5532 . 1139–1142 . 10.1126/science.1061216 . 11423616 . 17404294 . 0036-8075.
  19. Topisirovic . Ivan . Capili . Allan D. . Borden . Katherine L. B. . 2002-09-01 . Gamma Interferon and Cadmium Treatments Modulate Eukaryotic Initiation Factor 4E-Dependent mRNA Transport of Cyclin D1 in a PML-Dependent Manner . Molecular and Cellular Biology . en . 22 . 17 . 6183–6198 . 10.1128/MCB.22.17.6183-6198.2002 . 1098-5549 . 134012 . 12167712.
  20. Topisirovic . I. . 2003-02-03 . The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth . The EMBO Journal . 22 . 3 . 689–703 . 10.1093/emboj/cdg069 . 140753 . 12554669.
  21. Topisirovic . Ivan . Guzman . Monica L. . McConnell . Melanie J. . Licht . Jonathan D. . Culjkovic . Biljana . Neering . Sarah J. . Jordan . Craig T. . Borden . Katherine L. B. . 2003-12-01 . Aberrant Eukaryotic Translation Initiation Factor 4E-Dependent mRNA Transport Impedes Hematopoietic Differentiation and Contributes to Leukemogenesis . Molecular and Cellular Biology . en . 23 . 24 . 8992–9002 . 10.1128/MCB.23.24.8992-9002.2003 . 1098-5549 . 309660 . 14645512.
  22. Topisirovic . Ivan . Siddiqui . Nadeem . Lapointe . Vincent Leroux . Trost . Matthias . Thibault . Pierre . Bangeranye . Catherine . Piñol-Roma . Serafin . Borden . Katherine L B . 2009-04-22 . Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP . The EMBO Journal . 28 . 8 . 1087–1098 . 10.1038/emboj.2009.53 . 0261-4189 . 2683702 . 19262567.
  23. Culjkovic . Biljana . Topisirovic . Ivan . Skrabanek . Lucy . Ruiz-Gutierrez . Melisa . Borden . Katherine L.B. . 2005-04-25 . eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR . Journal of Cell Biology . en . 169 . 2 . 245–256 . 10.1083/jcb.200501019 . 1540-8140 . 2171863 . 15837800.
  24. Culjkovic . Biljana . Topisirovic . Ivan . Skrabanek . Lucy . Ruiz-Gutierrez . Melisa . Borden . Katherine L.B. . 2006-11-06 . eIF4E is a central node of an RNA regulon that governs cellular proliferation . Journal of Cell Biology . en . 175 . 3 . 415–426 . 10.1083/jcb.200607020 . 1540-8140 . 2064519 . 17074885.
  25. Rousseau . D . Kaspar . R . Rosenwald . I . Gehrke . L . Sonenberg . N . 1996-02-06 . Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. . Proceedings of the National Academy of Sciences . en . 93 . 3 . 1065–1070 . 10.1073/pnas.93.3.1065 . 0027-8424 . 40031 . 8577715 . 1996PNAS...93.1065R . free .
  26. Assouline . Sarit . Culjkovic . Biljana . Cocolakis . Eftihia . Rousseau . Caroline . Beslu . Nathalie . Amri . Abdellatif . Caplan . Stephen . Leber . Brian . Roy . Denis-Claude . Miller . Wilson H. . Borden . Katherine L. B. . 2009-07-09 . Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin . Blood . en . 114 . 2 . 257–260 . 10.1182/blood-2009-02-205153 . 19433856 . 28957125 . 0006-4971. free .
  27. Bollmann . Franziska . Fechir . Katrin . Nowag . Sebastian . Koch . Kathrin . Art . Julia . Kleinert . Hartmut . Pautz . Andrea . April 2013 . Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport . Nitric Oxide . en . 30 . 49–59 . 10.1016/j.niox.2013.02.083. 23471078 .
  28. Volpon . Laurent . Culjkovic-Kraljacic . Biljana . Osborne . Michael J. . Ramteke . Anup . Sun . Qingxiang . Niesman . Ashley . Chook . Yuh Min . Borden . Katherine L. B. . 2016-05-10 . Importin 8 mediates m 7 G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E . Proceedings of the National Academy of Sciences . en . 113 . 19 . 5263–5268 . 10.1073/pnas.1524291113 . 0027-8424 . 4868427 . 27114554 . 2016PNAS..113.5263V . free .
  29. Zahreddine . Hiba Ahmad . Culjkovic-Kraljacic . Biljana . Emond . Audrey . Pettersson . Filippa . Midura . Ronald . Lauer . Mark . Del Rincon . Sonia . Cali . Valbona . Assouline . Sarit . Miller . Wilson H . Hascall . Vincent . Borden . Katherine LB . 2017-11-07 . The eukaryotic translation initiation factor eIF4E harnesses hyaluronan production to drive its malignant activity . eLife . en . 6 . e29830 . 10.7554/eLife.29830 . 2050-084X . 5705209 . 29111978 . free .
  30. Culjkovic-Kraljacic . Biljana . Fernando . Tharu M. . Marullo . Rossella . Calvo-Vidal . Nieves . Verma . Akanksha . Yang . ShaoNing . Tabbò . Fabrizio . Gaudiano . Marcello . Zahreddine . Hiba . Goldstein . Rebecca L. . Patel . Jayeshkumar . Taldone . Tony . Chiosis . Gabriela . Ladetto . Marco . Ghione . Paola . 2016-02-18 . Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas . Blood . en . 127 . 7 . 858–868 . 10.1182/blood-2015-05-645069 . 0006-4971 . 4760090 . 26603836.
  31. Volpon . Laurent . Culjkovic-Kraljacic . Biljana . Sohn . Hye Seon . Blanchet-Cohen . Alexis . Osborne . Michael J. . Borden . Katherine L.B. . June 2017 . A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery . RNA . en . 23 . 6 . 927–937 . 10.1261/rna.060137.116 . 1355-8382 . 5435865 . 28325843.
  32. Davis . Margaret Rose . Delaleau . Mildred . Borden . Katherine L.B. . April 2019 . Nuclear eIF4E Stimulates 3′-End Cleavage of Target RNAs . Cell Reports . en . 27 . 5 . 1397–1408.e4 . 10.1016/j.celrep.2019.04.008 . 6661904 . 31042468.
  33. Culjkovic-Kraljacic . Biljana . Skrabanek . Lucy . Revuelta . Maria V. . Gasiorek . Jadwiga . Cowling . Victoria H. . Cerchietti . Leandro . Borden . Katherine L. B. . 2020-10-27 . The eukaryotic translation initiation factor eIF4E elevates steady-state m 7 G capping of coding and noncoding transcripts . Proceedings of the National Academy of Sciences . en . 117 . 43 . 26773–26783 . 10.1073/pnas.2002360117 . 0027-8424 . 7604501 . 33055213 . 2020PNAS..11726773C . free .
  34. Ghram . Mehdi . Morris . Gavin . Culjkovic-Kraljacic . Biljana . Mars . Jean-Clement . Gendron . Patrick . Skrabanek . Lucy . Revuelta . Maria Victoria . Cerchietti . Leandro . Guzman . Monica L . Borden . Katherine L B . 2023-04-03 . The eukaryotic translation initiation factor eIF4E reprograms alternative splicing . The EMBO Journal . en . 42 . 7 . e110496 . 10.15252/embj.2021110496 . 0261-4189 . 10068332 . 36843541.
  35. Volpon . Laurent . Osborne . Michael J. . Borden . Katherine L.B. . 2019-05-20 . Biochemical and Structural Insights into the Eukaryotic Translation Initiation Factor eIF4E . Current Protein & Peptide Science . en . 20 . 6 . 525–535 . 10.2174/1389203720666190110142438. 30636602 . 58587801 .
  36. Duncan. R.. Milburn. S. C.. Hershey. J. W.. 1987-01-05. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. The Journal of Biological Chemistry. 262. 1. 380–388. 10.1016/S0021-9258(19)75938-9. 0021-9258. 3793730. free.
  37. Richter. Joel D.. Sonenberg. Nahum. 2005-02-03. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 433. 7025. 477–480. 10.1038/nature03205. 1476-4687. 15690031. 2005Natur.433..477R. 4347657.
  38. Rosenwald. I. B.. Rhoads. D. B.. Callanan. L. D.. Isselbacher. K. J.. Schmidt. E. V.. 1993-07-01. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proceedings of the National Academy of Sciences of the United States of America. 90. 13. 6175–6178. 0027-8424. 8327497. 46890. 10.1073/pnas.90.13.6175. 1993PNAS...90.6175R. free.
  39. Jones. R. M.. Branda. J.. Johnston. K. A.. Polymenis. M.. Gadd. M.. Rustgi. A.. Callanan. L.. Schmidt. E. V.. September 1996. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Molecular and Cellular Biology. 16. 9. 4754–4764. 0270-7306. 8756633. 231476. 10.1128/mcb.16.9.4754.
  40. Khanna-Gupta . Arati . Abayasekara . Nirmalee . Levine . Michelle . Sun . Hong . Virgilio . Maria . Nia . Navid . Halene . Stephanie . Sportoletti . Paolo . Jeong . Jee-Yeong . Pandolfi . Pier Paolo . Berliner . Nancy . September 2012 . Up-regulation of Translation Eukaryotic Initiation Factor 4E in Nucleophosmin 1 Haploinsufficient Cells Results in Changes in CCAAT Enhancer-binding Protein α Activity . Journal of Biological Chemistry . en . 287 . 39 . 32728–32737 . 10.1074/jbc.M112.373274 . 3463350 . 22851180 . free .
  41. Hariri . F . Arguello . M . Volpon . L . Culjkovic-Kraljacic . B . Nielsen . T H . Hiscott . J . Mann . K K . Borden . K L B . October 2013 . The eukaryotic translation initiation factor eIF4E is a direct transcriptional target of NF-κB and is aberrantly regulated in acute myeloid leukemia . Leukemia . en . 27 . 10 . 2047–2055 . 10.1038/leu.2013.73 . 0887-6924 . 4429918 . 23467026.
  42. Mazan-Mamczarz . Krystyna . Lal . Ashish . Martindale . Jennifer L. . Kawai . Tomoko . Gorospe . Myriam . 2006-04-01 . Translational Repression by RNA-Binding Protein TIAR . Molecular and Cellular Biology . en . 26 . 7 . 2716–2727 . 10.1128/MCB.26.7.2716-2727.2006 . 1098-5549 . 1430315 . 16537914.
  43. Topisirovic . Ivan . Siddiqui . Nadeem . Orolicki . Slobodanka . Skrabanek . Lucy A. . Tremblay . Mathieu . Hoang . Trang . Borden . Katherine L. B. . 2009-03-01 . Stability of Eukaryotic Translation Initiation Factor 4E mRNA Is Regulated by HuR, and This Activity Is Dysregulated in Cancer . Molecular and Cellular Biology . en . 29 . 5 . 1152–1162 . 10.1128/MCB.01532-08 . 1098-5549 . 2643828 . 19114552.
  44. Sorrells . Donald L. . Black . Destin R. . Meschonat . Carol . Rhoads . Robert . De Benedetti . Arrigo . Gao . Mingxing . Williams . B. Jill . Li . Benjamin D. L. . April 1998 . Detection of eIF4E gene amplification in breast cancer by competitive PCR . Annals of Surgical Oncology . en . 5 . 3 . 232–237 . 10.1007/BF02303778 . 9607624 . 776478 . 1068-9265.
  45. Morley. S. J.. Traugh. J. A.. 1990-06-25. Differential stimulation of phosphorylation of initiation factors eIF-4F, eIF-4B, eIF-3, and ribosomal protein S6 by insulin and phorbol esters. The Journal of Biological Chemistry. 265. 18. 10611–10616. 10.1016/S0021-9258(18)86990-3. 0021-9258. 2191953. free.
  46. Bonneau. A. M.. Sonenberg. N.. 1987-08-15. Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis. The Journal of Biological Chemistry. 262. 23. 11134–11139. 10.1016/S0021-9258(18)60935-4. 0021-9258. 3038908. free.
  47. Topisirovic . Ivan . Ruiz-Gutierrez . Melisa . Borden . Katherine L. B. . 2004-12-01 . Phosphorylation of the Eukaryotic Translation Initiation Factor eIF4E Contributes to Its Transformation and mRNA Transport Activities . Cancer Research . en . 64 . 23 . 8639–8642 . 10.1158/0008-5472.CAN-04-2677 . 15574771 . 21104713 . 0008-5472. free .
  48. Peter. Daniel. Igreja. Cátia. Weber. Ramona. Wohlbold. Lara. Weiler. Catrin. Ebertsch. Linda. Weichenrieder. Oliver. Izaurralde. Elisa. 2015-03-19. Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Molecular Cell. 57. 6. 1074–1087. 10.1016/j.molcel.2015.01.017. 1097-4164. 25702871. free.
  49. Whalen. S. G.. Gingras. A. C.. Amankwa. L.. Mader. S.. Branton. P. E.. Aebersold. R.. Sonenberg. N.. 1996-05-17. Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. The Journal of Biological Chemistry. 271. 20. 11831–11837. 0021-9258. 8662663. 10.1074/jbc.271.20.11831. free.
  50. Rong . Liwei . Livingstone . Mark . Sukarieh . Rami . Petroulakis . Emmanuel . Gingras . Anne-Claude . Crosby . Katherine . Smith . Bradley . Polakiewicz . Roberto D. . Pelletier . Jerry . Ferraiuolo . Maria A. . Sonenberg . Nahum . July 2008 . Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs . RNA . en . 14 . 7 . 1318–1327 . 10.1261/rna.950608 . 1355-8382 . 2441981 . 18515545.
  51. Chen . Chao-Chung . Lee . Jeng-Chang . Chang . Ming-Chung . 2012-07-30 . 4E-BP3 regulates eIF4E-mediated nuclear mRNA export and interacts with replication protein A2 . FEBS Letters . en . 586 . 16 . 2260–2266 . 10.1016/j.febslet.2012.05.059. 22684010 . 40980342 . free .
  52. Niessing . Dierk . Blanke . Stephen . Jäckle . Herbert . 2002-10-01 . Bicoid associates with the 5′-cap-bound complex of caudal mRNA and represses translation . Genes & Development . en . 16 . 19 . 2576–2582 . 10.1101/gad.240002 . 0890-9369 . 187448 . 12368268.
  53. Nédélec . Stéphane . Foucher . Isabelle . Brunet . Isabelle . Bouillot . Colette . Prochiantz . Alain . Trembleau . Alain . 2004-07-20 . Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons . Proceedings of the National Academy of Sciences . en . 101 . 29 . 10815–10820 . 10.1073/pnas.0403824101 . 0027-8424 . 490017 . 15247416 . 2004PNAS..10110815N . free .
  54. Brunet . Isabelle . Weinl . Christine . Piper . Michael . Trembleau . Alain . Volovitch . Michel . Harris . William . Prochiantz . Alain . Holt . Christine . November 2005 . The transcription factor Engrailed-2 guides retinal axons . Nature . en . 438 . 7064 . 94–98 . 10.1038/nature04110 . 0028-0836 . 3785142 . 16267555. 2005Natur.438...94B .
  55. October 2005 . Homeodomain proteins and eukaryotic translation initiation factor 4E (eIF4E): an unexpected relationship . Histology and Histopathology . 20 . 1275–1284 . 10.14670/HH-20.1275 . 16136508 . 0213-3911 . Topisirovic . I. . Borden . K. L. . 20 .
  56. 2005-01-01 . The appearance of myofibroblasts and the disappearance of CD34-positive stromal cells in the area adjacent to xanthogranulomatous foci of chronic cholecystitis . Histology and Histopathology . 20 . 127–133 . 10.14670/HH-20.127 . 15578431 . 0213-3911 . Kuroda . N. . Guo . L. . Miyazaki . E. . Hamauzu . T. . Toi . M. . Hiroi . M. . Enzan . H. . 20 .
  57. Topisirovic . Ivan . Kentsis . Alex . Perez . Jacqueline M. . Guzman . Monica L. . Jordan . Craig T. . Borden . Katherine L. B. . 2005-02-01 . Eukaryotic Translation Initiation Factor 4E Activity Is Modulated by HOXA9 at Multiple Levels . Molecular and Cellular Biology . en . 25 . 3 . 1100–1112 . 10.1128/MCB.25.3.1100-1112.2005 . 1098-5549 . 544005 . 15657436.
  58. Shih . J-W . Tsai . T-Y . Chao . C-H . Wu Lee . Y-H . 2008-01-24 . Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein . Oncogene . en . 27 . 5 . 700–714 . 10.1038/sj.onc.1210687 . 17667941 . 19781838 . 0950-9232. free .
  59. Kentsis . Alex . Gordon . Ronald E. . Borden . Katherine L. B. . 2002-11-26 . Control of biochemical reactions through supramolecular RING domain self-assembly . Proceedings of the National Academy of Sciences . en . 99 . 24 . 15404–15409 . 10.1073/pnas.202608799 . 0027-8424 . 137729 . 12438698 . 2002PNAS...9915404K . free .
  60. Kentsis . Alex . Dwyer . Elizabeth Campbell . Perez . Jacqueline M . Sharma . Madhulika . Chen . Angus . Pan . Zheng Q . Borden . Katherine L.B . September 2001 . The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E 1 1Edited by D. Draper . Journal of Molecular Biology . en . 312 . 4 . 609–623 . 10.1006/jmbi.2001.5003. 11575918 .
  61. Kentsis . Alex . Gordon . Ronald E. . Borden . Katherine L. B. . 2002-01-22 . Self-assembly properties of a model RING domain . Proceedings of the National Academy of Sciences . en . 99 . 2 . 667–672 . 10.1073/pnas.012317299 . 0027-8424 . 117363 . 11792829 . free .
  62. Volpon . Laurent . Osborne . Michael J. . Capul . Althea A. . de la Torre . Juan C. . Borden . Katherine L. B. . 2010-03-23 . Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E . Proceedings of the National Academy of Sciences . en . 107 . 12 . 5441–5446 . 10.1073/pnas.0909877107 . 0027-8424 . 2851782 . 20212144 . 2010PNAS..107.5441V . free .
  63. Ferraiuolo . Maria A. . Basak . Sanjukta . Dostie . Josee . Murray . Elizabeth L. . Schoenberg . Daniel R. . Sonenberg . Nahum . 2005-09-12 . A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay . Journal of Cell Biology . en . 170 . 6 . 913–924 . 10.1083/jcb.200504039 . 1540-8140 . 2171455 . 16157702.
  64. German-Retana . Sylvie . Walter . Jocelyne . Le Gall . Olivier . March 2008 . Lettuce mosaic virus: from pathogen diversity to host interactors . Molecular Plant Pathology . en . 9 . 2 . 127–136 . 10.1111/j.1364-3703.2007.00451.x . 1464-6722 . 6640324 . 18705846.
  65. Coutinho de Oliveira . Luciana . Volpon . Laurent . Osborne . Michael J. . Borden . Katherine L. B. . April 2019 . Chemical shift assignment of the viral protein genome-linked (VPg) from potato virus Y . Biomolecular NMR Assignments . en . 13 . 1 . 9–13 . 10.1007/s12104-018-9842-3 . 1874-2718 . 6428624 . 30242622.
  66. Coutinho de Oliveira . Luciana . Volpon . Laurent . Rahardjo . Amanda K. . Osborne . Michael J. . Culjkovic-Kraljacic . Biljana . Trahan . Christian . Oeffinger . Marlene . Kwok . Benjamin H. . Borden . Katherine L. B. . 2019-11-26 . Structural studies of the eIF4E–VPg complex reveal a direct competition for capped RNA: Implications for translation . Proceedings of the National Academy of Sciences . en . 116 . 48 . 24056–24065 . 10.1073/pnas.1904752116 . 0027-8424 . 6883836 . 31712417 . 2019PNAS..11624056C . free .
  67. Lazaris-Karatzas. A.. Montine. K. S.. Sonenberg. N.. 1990-06-07. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature. 345. 6275. 544–547. 10.1038/345544a0. 0028-0836. 2348862. 1990Natur.345..544L. 4366949.
  68. Pelletier. Jerry. Graff. Jeremy. Ruggero. Davide. Sonenberg. Nahum. 2015-01-15. TARGETING THE eIF4F TRANSLATION INITIATION COMPLEX: A CRITICAL NEXUS FOR CANCER DEVELOPMENT. Cancer Research. 75. 2. 250–263. 10.1158/0008-5472.CAN-14-2789. 0008-5472. 4299928. 25593033.
  69. Ramaswamy. Sridhar. Ross. Ken N.. Lander. Eric S.. Golub. Todd R.. January 2003. A molecular signature of metastasis in primary solid tumors. Nature Genetics. En. 33. 1. 49–54. 10.1038/ng1060. 12469122. 12059602. 1546-1718.
  70. Culjkovic . Biljana . Borden . Katherine L. . 2009 . Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer . Journal of Oncology . en . 2009 . 981679 . 10.1155/2009/981679 . 1687-8450 . 2798714 . 20049173 . free .
  71. Pettersson . Filippa . Yau . Christina . Dobocan . Monica C. . Culjkovic-Kraljacic . Biljana . Retrouvay . Hélène . Puckett . Rachel . Flores . Ludmila M. . Krop . Ian E. . Rousseau . Caroline . Cocolakis . Eftihia . Borden . Katherine L. B. . Benz . Christopher C. . Miller . Wilson H. . 2011-05-01 . Ribavirin Treatment Effects on Breast Cancers Overexpressing eIF4E, a Biomarker with Prognostic Specificity for Luminal B-Type Breast Cancer . Clinical Cancer Research . en . 17 . 9 . 2874–2884 . 10.1158/1078-0432.CCR-10-2334 . 1078-0432 . 3086959 . 21415224.
  72. Assouline . S. . Culjkovic-Kraljacic . B. . Bergeron . J. . Caplan . S. . Cocolakis . E. . Lambert . C. . Lau . C. J. . Zahreddine . H. A. . Miller . W. H. . Borden . K. L. B. . 2015-01-01 . A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E . Haematologica . en . 100 . 1 . e7–e9 . 10.3324/haematol.2014.111245 . 0390-6078 . 4281321 . 25425688.
  73. Attar-Schneider . Oshrat . Pasmanik-Chor . Metsada . Tartakover-Matalon . Shelly . Drucker . Liat . Lishner . Michael . 2015-02-28 . eIF4E and eIF4GI have distinct and differential imprints on multiple myeloma's proteome and signaling . Oncotarget . en . 6 . 6 . 4315–4329 . 10.18632/oncotarget.3008 . 1949-2553 . 4414192 . 25717031.
  74. Zismanov . Victoria . Attar-Schneider . Oshrat . Lishner . Michael . Aizenfeld . Rachel Heffez . Matalon . Shelly Tartakover . Drucker . Liat . February 2015 . Multiple myeloma proteostasis can be targeted via translation initiation factor eIF4E . International Journal of Oncology . en . 46 . 2 . 860–870 . 10.3892/ijo.2014.2774 . 25422161 . 1019-6439. free .
  75. Dunn . Lara A. . Fury . Matthew G. . Sherman . Eric J. . Ho . Alan A. . Katabi . Nora . Haque . Sofia S. . Pfister . David G. . February 2018 . Phase I study of induction chemotherapy with afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer . Head & Neck . en . 40 . 2 . 233–241 . 10.1002/hed.24938 . 6760238 . 28963790.
  76. Urtishak . Karen A. . Wang . Li-San . Culjkovic-Kraljacic . Biljana . Davenport . James W. . Porazzi . Patrizia . Vincent . Tiffaney L. . Teachey . David T. . Tasian . Sarah K. . Moore . Jonni S. . Seif . Alix E. . Jin . Shenghao . Barrett . Jeffrey S. . Robinson . Blaine W. . Chen . I-Ming L. . Harvey . Richard C. . 2019-03-28 . Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia . Oncogene . en . 38 . 13 . 2241–2262 . 10.1038/s41388-018-0567-7 . 0950-9232 . 6440839 . 30478448.
  77. Kentsis . Alex . Topisirovic . Ivan . Culjkovic . Biljana . Shao . Ling . Borden . Katherine L. B. . 2004-12-28 . Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap . Proceedings of the National Academy of Sciences . en . 101 . 52 . 18105–18110 . 10.1073/pnas.0406927102 . 0027-8424 . 539790 . 15601771 . 2004PNAS..10118105K . free .
  78. Kentsis . Alex . Volpon . Laurent . Topisirovic . Ivan . Soll . Clifford E. . Culjkovic . Biljana . Shao . Ling . Borden . Katherine L.B. . December 2005 . Further evidence that ribavirin interacts with eIF4E . RNA . en . 11 . 12 . 1762–1766 . 10.1261/rna.2238705 . 1355-8382 . 1370864 . 16251386.
  79. Volpon . Laurent . Osborne . Michael J. . Zahreddine . Hiba . Romeo . Andrea A. . Borden . Katherine L.B. . May 2013 . Conformational changes induced in the eukaryotic translation initiation factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate . Biochemical and Biophysical Research Communications . en . 434 . 3 . 614–619 . 10.1016/j.bbrc.2013.03.125 . 3659399 . 23583375.
  80. Zahreddine . Hiba Ahmad . Culjkovic-Kraljacic . Biljana . Assouline . Sarit . Gendron . Patrick . Romeo . Andrea A. . Morris . Stephen J. . Cormack . Gregory . Jaquith . James B. . Cerchietti . Leandro . Cocolakis . Eftihia . Amri . Abdellatif . Bergeron . Julie . Leber . Brian . Becker . Michael W. . Pei . Shanshan . 2014-07-03 . The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation . Nature . en . 511 . 7507 . 90–93 . 10.1038/nature13283 . 0028-0836 . 4138053 . 24870236. 2014Natur.511...90Z .
  81. Shi . Fangfang . Len . Yamei . Gong . Yuping . Shi . Rui . Yang . Xi . Naren . Duolan . Yan . Tianyou . 2015-08-28 . Eaves . Connie J . Ribavirin Inhibits the Activity of mTOR/eIF4E, ERK/Mnk1/eIF4E Signaling Pathway and Synergizes with Tyrosine Kinase Inhibitor Imatinib to Impair Bcr-Abl Mediated Proliferation and Apoptosis in Ph+ Leukemia . PLOS ONE . en . 10 . 8 . e0136746 . 10.1371/journal.pone.0136746 . 1932-6203 . 4552648 . 26317515 . 2015PLoSO..1036746S . free .
  82. Dai . Dehua . Chen . Hujie . Tang . Jing . Tang . Yi . January 2017 . Inhibition of mTOR/eIF4E by anti-viral drug ribavirin effectively enhances the effects of paclitaxel in oral tongue squamous cell carcinoma . Biochemical and Biophysical Research Communications . en . 482 . 4 . 1259–1264 . 10.1016/j.bbrc.2016.12.025. 27932243 .
  83. Volpin . F . Casaos . J . Sesen . J . Mangraviti . A . Choi . J . Gorelick . N . Frikeche . J . Lott . T . Felder . R . Scotland . S J . Eisinger-Mathason . T S K . Brem . H . Tyler . B . Skuli . N . 2017-05-25 . Use of an anti-viral drug, Ribavirin, as an anti-glioblastoma therapeutic . Oncogene . en . 36 . 21 . 3037–3047 . 10.1038/onc.2016.457 . 27941882 . 21655102 . 0950-9232.
  84. Wang . Genguo . Li . Zhi . Li . Zhuojun . Huang . Yi . Mao . Xiaochun . Xu . Chang . Cui . Sha . December 2017 . Targeting eIF4E inhibits growth, survival and angiogenesis in retinoblastoma and enhances efficacy of chemotherapy . Biomedicine & Pharmacotherapy . en . 96 . 750–756 . 10.1016/j.biopha.2017.10.034. 29049978 .
  85. Xi . Changlei . Wang . Ling . Yu . Jie . Ye . Hui . Cao . Longlei . Gong . Zhilin . September 2018 . Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer . Biochemical and Biophysical Research Communications . en . 503 . 4 . 2286–2292 . 10.1016/j.bbrc.2018.06.150. 29959920 . 49634908 .
  86. Jin . Jing . Xiang . Wei . Wu . Shuang . Wang . Min . Xiao . Meifang . Deng . Ali . March 2019 . Targeting eIF4E signaling with ribavirin as a sensitizing strategy for ovarian cancer . Biochemical and Biophysical Research Communications . en . 510 . 4 . 580–586 . 10.1016/j.bbrc.2019.01.117. 30739792 . 73419809 . subscription .
  87. Assouline . Sarit . Gasiorek . Jadwiga . Bergeron . Julie . Lambert . Caroline . Culjkovic-Kraljacic . Biljana . Cocolakis . Eftihia . Zakaria . Chadi . Szlachtycz . David . Yee . Karen . Borden . Katherine L.B. . 2023-03-23 . Molecular targeting of the UDP-glucuronosyltransferase enzymes in high-eukaryotic translation initiation factor 4E refractory/relapsed acute myeloid leukemia patients: a randomized phase II trial of vismodegib, ribavirin with or without decitabine . Haematologica . 108 . 11 . 2946–2958 . 10.3324/haematol.2023.282791 . 36951168 . 10620574 . 257733013 . 1592-8721. free .
  88. Graff . Jeremy R. . Konicek . Bruce W. . Vincent . Thomas M. . Lynch . Rebecca L. . Monteith . David . Weir . Spring N. . Schwier . Phil . Capen . Andrew . Goode . Robin L. . Dowless . Michele S. . Chen . Yuefeng . Zhang . Hong . Sissons . Sean . Cox . Karen . McNulty . Ann M. . 2007-09-04 . Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity . Journal of Clinical Investigation . en . 117 . 9 . 2638–2648 . 10.1172/JCI32044 . 17786246 . 1957541 . 0021-9738.
  89. Hong . David S. . Kurzrock . Razelle . Oh . Yun . Wheler . Jennifer . Naing . Aung . Brail . Les . Callies . Sophie . André . Valérie . Kadam . Sunil K. . Nasir . Aejaz . Holzer . Timothy R. . Meric-Bernstam . Funda . Fishman . Mayer . Simon . George . 2011-10-15 . A Phase 1 Dose Escalation, Pharmacokinetic, and Pharmacodynamic Evaluation of eIF-4E Antisense Oligonucleotide LY2275796 in Patients with Advanced Cancer . Clinical Cancer Research . en . 17 . 20 . 6582–6591 . 10.1158/1078-0432.CCR-11-0430 . 1078-0432 . 5036398 . 21831956.
  90. Papadopoulos . Evangelos . Jenni . Simon . Kabha . Eihab . Takrouri . Khuloud J. . Yi . Tingfang . Salvi . Nicola . Luna . Rafael E. . Gavathiotis . Evripidis . Mahalingam . Poornachandran . Arthanari . Haribabu . Rodriguez-Mias . Ricard . Yefidoff-Freedman . Revital . Aktas . Bertal H. . Chorev . Michael . Halperin . Jose A. . 2014-08-05 . Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G . Proceedings of the National Academy of Sciences . en . 111 . 31 . E3187-95 . 10.1073/pnas.1410250111 . 0027-8424 . 4128100 . 25049413 . 2014PNAS..111E3187P . free .
  91. Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, Witke W, Costa-Mattioli M, Sonenberg N, Achsel T, Bagni C . The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP . Cell . 134 . 6 . 1042–1054 . September 2008 . 18805096 . 10.1016/j.cell.2008.07.031 . 14123165 . free .
  92. Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C . The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses . Cell . 112 . 3 . 317–27 . February 2003 . 12581522 . 10.1016/S0092-8674(03)00079-5 . 14892764 . free .
  93. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D . Large-scale mapping of human protein-protein interactions by mass spectrometry . Mol. Syst. Biol. . 3 . 89 . 17353931 . 1847948 . 10.1038/msb4100134 . 2007.
  94. Connolly E, Braunstein S, Formenti S, Schneider RJ . Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells . Mol. Cell. Biol. . 26 . 10 . 3955–65 . May 2006 . 16648488 . 1489005 . 10.1128/MCB.26.10.3955-3965.2006 .
  95. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M . Towards a proteome-scale map of the human protein-protein interaction network . Nature . 437 . 7062 . 1173–8 . October 2005 . 16189514 . 10.1038/nature04209 . 2005Natur.437.1173R . 4427026 .
  96. Mader S, Lee H, Pause A, Sonenberg N . The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins . Mol. Cell. Biol. . 15 . 9 . 4990–7 . September 1995 . 7651417 . 230746 . 10.1128/MCB.15.9.4990.
  97. Rao RD, Mladek AC, Lamont JD, Goble JM, Erlichman C, James CD, Sarkaria JN . Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells . Neoplasia . 7 . 10 . 921–9 . October 2005 . 16242075 . 1502028 . 10.1593/neo.05361.
  98. Eguchi S, Tokunaga C, Hidayat S, Oshiro N, Yoshino K, Kikkawa U, Yonezawa K . Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size . Genes Cells . 11 . 7 . 757–66 . July 2006 . 16824195 . 10.1111/j.1365-2443.2006.00977.x . 30113895 .
  99. Yang D, Brunn GJ, Lawrence JC . Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR . FEBS Lett. . 453 . 3 . 387–90 . June 1999 . 10405182 . 10.1016/s0014-5793(99)00762-0. 5023204 . free .
  100. Patel J, McLeod LE, Vries RG, Flynn A, Wang X, Proud CG . Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors . Eur. J. Biochem. . 269 . 12 . 3076–85 . June 2002 . 12071973 . 10.1046/j.1432-1033.2002.02992.x. free .
  101. Kumar V, Sabatini D, Pandey P, Gingras AC, Majumder PK, Kumar M, Yuan ZM, Carmichael G, Weichselbaum R, Sonenberg N, Kufe D, Kharbanda S . Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase . J. Biol. Chem. . 275 . 15 . 10779–87 . April 2000 . 10753870 . 10.1074/jbc.275.15.10779. free .
  102. Kumar V, Pandey P, Sabatini D, Kumar M, Majumder PK, Bharti A, Carmichael G, Kufe D, Kharbanda S . Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation . EMBO J. . 19 . 5 . 1087–97 . March 2000 . 10698949 . 305647 . 10.1093/emboj/19.5.1087 .
  103. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N . Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism . Genes Dev. . 13 . 11 . 1422–37 . June 1999 . 10364159 . 316780 . 10.1101/gad.13.11.1422.
  104. Shen X, Tomoo K, Uchiyama S, Kobayashi Y, Ishida T . Structural and thermodynamic behavior of eukaryotic initiation factor 4E in supramolecular formation with 4E-binding protein 1 and mRNA cap analogue, studied by spectroscopic methods . Chem. Pharm. Bull. . 49 . 10 . 1299–303 . October 2001 . 11605658 . 10.1248/cpb.49.1299. free .
  105. Adegoke OA, Chevalier S, Morais JA, Gougeon R, Kimball SR, Jefferson LS, Wing SS, Marliss EB . Fed-state clamp stimulates cellular mechanisms of muscle protein anabolism and modulates glucose disposal in normal men . Am. J. Physiol. Endocrinol. Metab. . 296 . 1 . E105–13 . January 2009 . 18957614 . 2636991 . 10.1152/ajpendo.90752.2008 .
  106. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence JC, Sonenberg N . Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function . Nature . 371 . 6500 . 762–7 . October 1994 . 7935836 . 10.1038/371762a0 . 1994Natur.371..762P . 4360955 .
  107. Kleijn M, Scheper GC, Wilson ML, Tee AR, Proud CG . Localisation and regulation of the eIF4E-binding protein 4E-BP3 . FEBS Lett. . 532 . 3 . 319–23 . December 2002 . 12482586 . 10.1016/s0014-5793(02)03694-3. 24527449 .
  108. Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N . 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family . J. Biol. Chem. . 273 . 22 . 14002–7 . May 1998 . 9593750 . 10.1074/jbc.273.22.14002. free .
  109. Dostie J, Ferraiuolo M, Pause A, Adam SA, Sonenberg N . A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5' cap-binding protein, eIF4E . EMBO J. . 19 . 12 . 3142–56 . June 2000 . 10856257 . 203362 . 10.1093/emboj/19.12.3142 .
  110. Vary TC, Jefferson LS, Kimball SR . Amino acid-induced stimulation of translation initiation in rat skeletal muscle . Am. J. Physiol. . 277 . 6 Pt 1 . E1077–86 . December 1999 . 10600798 . 10.1152/ajpendo.1999.277.6.E1077. 4516850 .
  111. Harris TE, Chi A, Shabanowitz J, Hunt DF, Rhoads RE, Lawrence JC . mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin . EMBO J. . 25 . 8 . 1659–68 . April 2006 . 16541103 . 1440840 . 10.1038/sj.emboj.7601047 .
  112. Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, Sonenberg N . A novel functional human eukaryotic translation initiation factor 4G . Mol. Cell. Biol. . 18 . 1 . 334–42 . January 1998 . 9418880 . 121501 . 10.1128/mcb.18.1.334.
  113. Osborne . Michael J. . Volpon . Laurent . Memarpoor-Yazdi . Mina . Pillay . Shubhadra . Thambipillai . Aksharh . Czarnota . Sylwia . Culjkovic-Kraljacic . Biljana . Trahan . Christian . Oeffinger . Marlene . Cowling . Victoria H. . Borden . Katherine L.B. . March 2022 . Identification and Characterization of the Interaction Between the Methyl-7-Guanosine Cap Maturation Enzyme RNMT and the Cap-Binding Protein eIF4E . Journal of Molecular Biology . en . 434 . 5 . 167451 . 10.1016/j.jmb.2022.167451 . 9288840 . 35026230.