In mathematics, the Duflo isomorphism is an isomorphism between the center of the universal enveloping algebra of a finite-dimensional Lie algebra and the invariants of its symmetric algebra. It was introduced by and later generalized to arbitrary finite-dimensional Lie algebras by Kontsevich.
The Poincaré-Birkoff-Witt theorem gives for any Lie algebra
ak{g}
S(ak{g})
U(ak{g})
ak{g}
F\colonS(ak{g})ak{g
ak{g}
S(ak{g})ak{g
U(ak{g})ak{g
U(ak{g})ak{g
U(ak{g})
F
F
G\colonS(ak{g})ak{g
F\circG\colonS(ak{g})ak{g
Following Calaque and Rossi, the map
G
ak{g}
ak{g}\toEnd(ak{g})
x\inak{g}
[x,-]
ak{g}
ak{g}\ast ⊗ End(ak{g})
S(ak{g}\ast) ⊗ End(ak{g})
ak{g}\ast\subsetS(ak{g}\ast)
ad\inS(ak{g}\ast) ⊗ End(ak{g})
S(ak{g}\ast)
End(ak{g})
ad
adk\inS(ak{g}\ast) ⊗ End(ak{g}).
ad
\overline{S}(ak{g}\ast) ⊗ End(ak{g})
\overline{S}(ak{g}\ast)
ak{g}\ast
\sqrt{ | ead-e-ad |
ad |
ak{g}
End(ak{g})
Mn(R)
\overline{S}(ak{g}\ast) ⊗ End(ak{g})
\ast)) | |
M | |
n(\overline{S}(ak{g} |
\tilde{J}1/2:=det\sqrt{
ead-e-ad | |
ad |
Now,
ak{g}\ast
S(ak{g})
ak{g}\ast
ak{g}
S(ak{g}\ast)
S(ak{g})
\overline{S}(ak{g}\ast)
S(ak{g})
G\colonS(ak{g})\toS(ak{g})
G(\psi)=\tilde{J}1/2\psi
G
G\colonS(ak{g})ak{g
For a nilpotent Lie algebra the Duflo isomorphism coincides with the symmetrization map from symmetric algebra to universal enveloping algebra. For a semisimple Lie algebra the Duflo isomorphism is compatible in a natural way with the Harish-Chandra isomorphism.